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Abstract

In this work we propose an objective function to
obtain an interval-valued fuzzy clustering. After the
process of optimization we obtain an interval-valued
fuzzy partition in which the length of the intervals
depends on the position of the points with respect
of the clusters.

Keywords: Style files, WTEX

1. Introduction

Clustering algorithms that are considered one of the
methods in unsupervised machine learning are pow-
erful tools for extracting knowledge from raw data.
Their goal is to divide the data in to meaningful
clusters. Basically clustering an unlabeled data set
X = {ac(l), . ,m(m)} is the partitioning of X into
C{1 < C < m) subgroups such that each one rep-
resents a natural substructure in X [12].

One of the most widely used fuzzy clustering
models is Fuzzy C-Means (FCM) [1]. The FCM al-
gorithm assigns memberships to the elements which
are inversely related to the relative distance of them
to the point prototypes that are the cluster centres.

FCM algorithms have been shown to be closely
related to Gaussian Mixture Models [8]. Gan et al.
[9] showed that the GMMs can be translated to an
additive fuzzy system. Ichihashi et al. [11] showed
that the EM algorithm for the GMM can be derived
from the FCM, when considering a regularized fuzzy
objective function, for a proper selection of the dis-
tance metric.

Most of the existing clustering algorithms, includ-
ing GMMs and FCMs,impose a probabilistic con-
straint on the utilized membership functions: the
obtained cluster memberships of a data point must
sum up to one over the derived clusters. Such con-
strained membership functions are not capable of
distinguishing between data points which would be
equally likely to belong to more than one cluster,
also called as inliers, or data points that would be
unlikely to belong to anyone of the known clusters,
usually referred as outliers.

There exist different approaches to deal with this
problem. Most common way to face it, is to remove
the probabilistic constrain, such a way that the sum
of the memberships of a point to the clusters must
be between zero and one. The possibilistic c-means
[13] and some of its improvements [12] are classi-
cal algorithms without the probabilistic constrain,
or more recently we proposed the Fuzzy Mixture
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Models [16]. Another approach is to obtain an in-
terval partition, instead of a fuzzy partition, such a
way the length of the intervals show the uncertainty
of the inliers and outliers.

Currently, there are three typical interval-valued
fuzzy clustering algorithms, i.e. the Interval-valued
Fuzzy C-means algorithm (IFCM) [5] (originlly
called Interval type-2 fuzzy cluster means) and
Interval-valued fuzzy Possibilistic C-Means algo-
rithm (IPCM) [6], and the [5]. These algorithms
are commonly viewed as the generalization of the
standard FCM and PCM algorithms; However both
algorithms are based on the application of the FCM
or PCM several times, and from the different so-
lutions obtained, then create an interval solution.
These algorithms have been extended and used in
several applications [17] and [18]. However the sim-
ple extension of the methodology and constrains of
FCM to the interval case provokes errors. For exam-
ple, some authors set a restriction to their interval
partition, similar to the constrain of a fuzzy parti-
tion. This new constrain is such that the sum of
the lower memberships of an element to every clus-
ter must sum up to one, and the sum of the upper
memberships of an element to every cluster must
sum up to one also [18]. But it is only possible if
the lower membership is equal to the upper mem-
bership, i.e. it is a point, not an interval.

In this work we propose an extension of the FCM
algorithm that obtains an interval valued fuzzy par-
tition. We propose an objective function to mini-
mize from which the length of the intervals of the
data points (inliers or outliers), that we know it is
very difficult to assign those points to a cluster, is
larger than the "normal" points. Such that after
the clustering process we can identify those points.
We propose to use a constrain in the interval fuzzy
partition such that only the sum of the lower mem-
berships must sum up to one.

The paper is organized as follows: First, some
necessary concepts and definitions are explained.
Next, in section 3, the problem of the probabilis-
tic (or fuzzy) partition is explained in a detailed
example. In Section 4 the method proposed is de-
scribed, and in section 5 some numerical examples
are shown and discussed. Finally, the conclusions
and future research are detailed.

2. Preliminaries

In this section a set of definitions, theorems and
algorithms are recalled to understand the rest of



the work.

Definition 1 (Fuzzy set) A fuzzy set A on a fi-
nite universe U # () is a mapping A: U — [0,1].

We denote by FS(U) the set of all fuzzy sets on U.

2.1. Interval valued fuzzy sets

Let us denote by L(]0,1]) the set of all closed subin-
tervals in [0, 1]:

L([O’ 1]) = {X = [&,EHO <z<7T< 1}'

Then L([0,1]) is a partially ordered set with re-
spect to the relation <j defined in the following
way: given x,y € L([0,1]),

x<pyifandonlyifz <yand7<7y.

Moreover (L([0,1]),<p) is a complete lattice with
smallest element 07, = [0,0] and largest element
1z, = [1,1]. Note that it is not a linear lattice, since
there are elements which are not comparable.

The following definition can be found in [2].

Definition 2 (Interval-valued fuzzy set) An
interval-valued fuzzy set (IVFS) A on a finite
ungverse U # () is a mapping A: U — L([0,1]).

Let us denote by W the function that asso-
ciates to a closed subinterval of [0, 1] its length, i.e.
W L([0,1]) — [0,1] with W([z,Z]) = T —z. If
x = [z,T] € L([0,1]), by interval arithmetics it is
1—-x=[1,1] = [z,%] = [1 — T, 1 — z] and we have
that W(x) = W(1 — x). Note that given an IVFS
A the membership of each element u; € U is repre-
sented by an interval value A(u;) = [pa(u;), Fa(u;)]
with length W (pa(u;)) = Ta(us) — palug). A study
on the evolution of the IVFSs and several results
on their representation, connective types and oper-
ations can be found in [2]. We denote by ZVFS(U)
the set of all IVFSs on U.

There are
IVFSs [15]:

two different interpretations of

1. The membership degree of an element to the
set corresponds to a value in the considered
membership interval. We can not say in a pre-
cise way what that value is, so we just provide
bounds for that number are provided.

2. The membership degree of each element is the
whole closed subinterval provided as member-
ship, understood as a mathematical entity.

In this work we are going to use the first inter-
pretation, in fact we are going to assign an interval
membership to every point to each cluster. Such
a way the larger the length, greater uncertainty we
have on the membership of that point to the cluster.
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2.2. Orders between intervals

In [3] the notion of admissible orders on L([0,1])
was introduced and investigated. The authors es-
tablished that a binary relation < on L([0, 1]) is an
admissible order if it is a linear order on L([0,1])
refining <y, i.e. if for all [a, b], [¢,d] € L(]0, 1]) such
that [a,b] <p, [¢,d] then it is also [a,b] < [¢,d]. The
use of admissible orders allow us to compare inter-
vals using total orders between them. Next some
examples of admissible orders are given.

Example 1 Let [a,b], [c,d] € L([0,1]) :

o [0,b] <11 ]c,d] @ a<cor(a=candb<d);

[a,b] <2 [e,d] & b<dor(b=danda<c);

[a,b] <xv [¢,d] & a+b < c+d or (a+b=c+d

and b—a < d—c) (defined by Xu and Yager

o [a,b] =Zap [6,d] & Ku(a,b) < Ky(c,d) or
(Ko(a,b) = Kqu(c,d) and Kg(a,b) < Kg(c,d)),
being Ko : [0,1]2 — [0,1] a mapping defined by
Ky(a,b) =a+a-(b—a) for a,8 € [0,1] and
a # B.

Definition 3 An n-ary (n € N,n > 2) aggregation
function is a non-decreasing mapping in each argu-
ment, M: [0,1]" — [0, 1], verifying M(0,---,0)
0 and M(1,---,1) =1.

Bustince et al. [3] described different construc-
tion methods of admissible orders by means of ag-
gregation functions, as well as the notion of aggre-
gation function of interval values.

2.3. Interval Type-2 Fuzzy Sets and IVFSs

From the notion given by Karnik and Mendel in
1998 of T2FSs, Interval Type 2 Fuzzy Sets were
defined in 2006 (see [14]) as follows.

Definition 4 When all pa(z,u) =1, then A is an
IT2FS.

Hence, according to [14], an IT2FS corresponds
to

A(z) ={(w,1) [ue J. C[0,1]} (1)

for every z € X.

It has been proven in [4] that IT2FSs represent
a generalization of the concept of IVFSs and that
both concepts are not equivalent. Note that in the
definition given in [14] J, C [0, 1] is used. However,
it is well known that with such mathematical ex-
pression J, may be any subset of [0, 1], not just a
closed subinterval.

In the literature, there has been a confusion about
the IT2FSs. Mostly all of the works related with
IT2FS supposes that the membership is just a closed
subinterval, therefore, equivalent to IVFSs.



2.4. Interval valued fuzzy partition

The concept of I-fuzzy partition, that is a general-
ization of the fuzzy partition was proposed by V.
Torra and Miyamoto [19]. They propose this gen-
eralization for the case of Intuitionistic fuzzy sets
and Interval valued fuzzy sets. If we consider a set
of IVFSs, it is not possible that all of the lower
memberships sum up to one and all of the upper
memberships sum up to one at the same time (un-
less W = 0). The generalization requires that only
the lower memberships sum up to one.

Definition 5 Let X be a referential set. Then a set
of IVFSs A = {Ay,--- ,Ac} is an interval valued
fuzzy partition if

1. chzl&(z) =1 forallz € X;
2. there is at most one IVFS such that p;(z)
I (x) for all x.

2.5. Fuzzy cluster means

Let an unlabeled data set X = {z() ... (™} of
m examples, and each example z(*) = (xﬁ“, . ,xﬁf))
is a vector of n dimensions. The aim of FCM is to
find the cluster centres (centroids) v, that minimize
a dissimilarity function. The dissimilarity function
measures de distance between a point (¥ and the
cluster prototype v,:

di. = |29 — vel[%

(2)

being ||.||4 an induced norm on R™ with A a pos-
itive definite (n x n) weight matrix. The objective
function J(U,v) is the weighted sum of dissimilari-
ties within each cluster:

c
J(U,v) = Z Z(/Lc(x(i)))bd?c

=1 c=1

(3)

being U the fuzzy partition and b the weighting ex-
ponent called the degree of fuzziness. The process-
ing of minimizing object function J(U,v) depends
on how centres find their ways to the best positions,
as the fuzzy memberships p.(z(*) and norm dis-
tance d?, would change along with the new centres’
position. Approximate optimization of J(U,v) is
based on the iteration through the following neces-
sary conditions for its local extrema.

Theorem 1 FCM [1] If die = ||z — v.|| > 0 for
alli, and c,b > 1, and X contains at least ¢ distinct
points, then (U,v) may minimize J(U,v) only if

' c 2 2/(b—1)
Mc(x(Z)): Z dilzc

j=1 ij

—1

(4)
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Data FCM
Point | x y [ @) | pa(a®)
1 5, | 0 | 09583 | 0.0417
2 [ -334 | 1.67 | 0.9755 | 0.0245
3 [ 334 0 | 09756 | 0.0244
4 | 334 [ -1.67 | 09318 | 0.0682
5 [-167| 0 | 09541 | 0.0459
6 | 1.67 | 0 | 0.0456 | 0.9544
7 | 334 | 1.67 | 0.0245 | 0.9755
8 [ 334 0 | 00245 | 09755
9 | 334 | -1.67 | 0.0683 | 0.9317
10 5 0 | 0.0419 | 0.9581
11 0 0 | 0.5002 | 0.4998
12 0 10 | 0.5000 | 0.5000

Table 1: Data set and its memberships obtained
from FCM
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Figure 1: Points representing the data set of Table 1

3. The problem of Fuzzy partitions

Many authors have described the problem of fuzzy
partitions. In this section we show an example that
was described in [12] by Pal et. al.. We have
the data set {z(M), 2@ ... 20D 2021 that are
shown in Table 1 and Figure 1.

We can see that the data set has two clusters
with five points each, with (') and z(!? as two
points difficult to assing to each cluster. Usu-
ally 29 is called an inlier (bridge) and (1) is
called an outlier or noise. These inliers and out-
liers can affect the partitions found by FCM. In
[12] it was shown how the terminal centroids ob-
tained by FCM vary their position on the pres-
ence of inliers and outliers. In fact, taking the
data set of points {z(M, 2z ... 209} an ap-
plying FCM, the centroids obtained are differ-
ent from the ones obtained, with the same pa-
rameters and initial conditions, with the data set
{zM 2@ ... 20D 2021 However the member-
ships of points (1,2 ... . 219 do not change
very much at all. Points (") and z(!? have



membership values around 0.5 in each cluster be-
cause both are equidistant from the centroids, even
though (1) is further away from the clusters than
(D The problem is caused by the definition of
the partition, that is, the summation constraint
Zf:l pe(z®) = 1. Therefore, to obtain a parti-
tion in which we can identify inliers and outliers is
an interesting challenge.

4. Interval valued fuzzy clustering proposal

In our proposal we want to obtain an interval val-
ued fuzzy partition satisfying Definition 5 after the
clustering process. We demand two conditions:

1. The length of the intervals of the points that
are inside of a cluster must as short.

2. The length of the intervals of the points that
are far from every cluster must be large.

Moreover the partition obtained should represent
the inherent structure of the data. Taking into ac-
count all those considerations we propose a new ob-
jective function (Equation 6) in which the member-
ships of the elements to the clusters are intervals.

The first term of the objective is the same as the
classical FCM, using the lower membership value
of the intervals, and it deals with the objective of
getting a partition that represents the structure of
the data. The second term deals with the length of
the intervals regarding the position of the element
with respect to the clusters. If the distance to every
cluster is short, then the length of the interval must
be short, due to it is a minimization process. On
the contrary, if the distance of the point is large to
every cluster, then the length of its interval should
be large, as we have demanded.

There are several constrains. The first ones are
related to the interval valued fuzzy partition in
which the sum of all the lower membership degrees
must sum up to one. There is a constraint for every

element.
c
> ne(a) =1
c=1

Furthermore the intervals membership must be
intervals., i.e. the lower membership must be less
than or equal the upper memberships, and both of
them are bounded by zero and one. There is a con-
straint for all of the cluster memberships of every
element.

(7)

0 < pe(a?) < () <1 (8)
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The centroids of the clusters are calculated using
the lower membership of the interval:

ity pe(a®)2?

T TS e
the distance dfc between the ith element and the

cluster c¢ is calculated by the following expression
(similar to FCM):

9)

di. = [l = ve|% (10)
There is also a parameter K in the second term of
the objective function (Equation 6). This parameter
is used to control the length of the intervals in the
final partition. If the value of K is high, as it is a
minimization process, the second term will have a
lot of weight and then the length of the intervals will
be short. On the contrary if K is low then we will
obtain a partition with large length of the intervals.

Solving this optimization problem is a non-trivial
task and may become computationally expensive.
The number of constrains is really high, (m*c+m)
and increase linearly with the number of examples
and clusters to be identified. We have applied the
solver fmincon function implemented in the opti-
mization toolbox of Matlab. This function provides
a method for constrained non-linear optimization
based on interior point methods.

It is left for future research to derive the objec-
tive function and obtain and approximate solution
by means of a set of iterative constrains, similar to
FCM and others.

5. Illustrative Examples

Next, we show the results of our proposal in two
different data sets. First we apply our method to
the data of Table (1) (section 3). We use the eu-
clidean distance, the parameters b = 1, K = 1,
C = 2 and the initial partition is random. In Ta-
ble 2 are the interval valued fuzzy memberships ob-
tained. We can observe that {z(1), 23 ... (10}
have high memberships with very short length of the
intervals to the clusters which they belong and very
low memberships with also short interval length to
the other cluster. Points z(!") and z(1?) have lower
membership values around 0.5 in each cluster and
the length of their intervals are larger than the other
elements. In Figure 2 the size of the dots is propor-
tional to the length of the intervals of the member-
ships to cluster 2 (fourth and fifth columns of Table
2). The color of the dots is chosen depending on
the cluster assigned. To calculate which interval is
greater we have used the following admissible order:
[a,b] <1 [e,d] & a<cor (a=candb<d).

So, in this data set we have achieved our objec-
tive. We can identify inliers and outliers based on
their interval memberships. If the lower member-
ship is near 0.5 we know that this point is really
difficult to assign to a cluster. Furthermore, if the



Cluster 1 Cluster 2
Pt @) me®) [ me) me®)
1 0.9427 0.9690 0.0573 0.2600
2 0.9377 0.9640 0.0623 0.1719
3 0.9377 0.9641 0.0623 0.1717
4 0.9245 0.9581 0.0755 0.2756
5 0.9083 0.9431 0.0917 0.1910
6 0.0917 0.1266 0.9083 1.0
7 0.0623 0.0887 0.9377 1.0
8 0.0623 0.0886 0.9377 1.0
9 0.0755 0.1091 0.9245 1.0
10 | 0.0573 0.0836 0.9427 1.0
11 0.5000 0.5997 0.5000 0.6939
12 | 0.5000 0.6311 0.5000 0.8762

Table 2: Interval memberships obtained from IV-
FCM
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Figure 2: Picture of the length of the intervals in
the final partition

1292

-6

-8

-10

Figure 3: Synthetic data

length of the interval is greater than the majority
of the the elements, it should be an outlier, and if
the length is similar, then it should be an inlier.

Due to we are using an approximate minimization
function, there are some residuals that makes that
the memberships generated are not absolutely sym-
metric. This makes that the detection of the outliers
must be done within a membership function. The
lengths of the intervals are incomparable between
different cluster memberships. In this example the
length of the interval of the inlier is between the
values of the normal points and the length of the
outlier.

Next, we are going to use a simulated data (sim-
ilar to the one used in [7]) to illustrate the re-
sults of our methodology in a set with a large
number of elements. The synthetic data is gener-
ated by means of 100 points of each of these three
bivariate Gaussian distribution functions: f,

0 2 05 3 [1 0

N ([3] ’ {0.5 0.5])’ o = N(M ’ [0 0.1])’
-3 2 —0.5

fe N<[ 0|’|-0.5 0.5 >

The final 100 points, outliers and noise, are gen-
erated from a bivariate Gaussian distribution with
each of its components in the interval [—10, 10] (see
Fig. 3).

We apply our method using the euclidean dis-
tance, the parameters b =1, K = 1, C = 3 and the
initial partition is random. In Figure (4) is similar
to Figure 2, where the size of the dots is propor-
tional to the length of the interval, and each point
has a color that depends on the cluster that each
point is assigned. The intervals are compared by
means of the order <j;. The properties that we
demand to the partition are also satisfied and the
outliers have greater length then the points near the
centroid of the cluster. There are also some inliers
with large amplitude.

We have tested our algorithm in different datasets
and we have obtained similar results.
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Figure 4: Picture of the length of the intervals in the final partition of the synthetic data

6. Conclusions and future research

In this work we have proposed an objective function
to obtain an interval-valued fuzzy partition.
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