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Abstract 

In recent years, Fuzzy Time Series have been considered 

a promising tool to deal with forecasting problems due 

to the ease to model the problems, the satisfactory results 

obtained and also to the low computational cost required. 

However, the long experience with traditional methods 

coming from statistics, certainly brings a rich knowledge 

that can be used to enhance the computational methods 

employed to deal with Fuzzy Time Series. This paper in-

troduces a forecast model where Fuzzy Time Series, lin-

ear regression and a new smoothing method are com-

bined. Experiments were performed with the Taiwan 

Stock Exchange index and compared with eight others 

approaches found in the literature. The results confirm 

that the proposed model presents a good accuracy with 

relation to the other methods. 

Keywords: fuzzy time series, linear regression, smooth-

ing technique, forecasting. 

1. Introduction 

The good results obtained in forecast problems with 

Fuzzy Time Series (FTS) methods and the facility to 

build and to interpret its models, have been some of the 

reasons why the interest in this topic has increased re-

cently. Since FTS was introduced in [1], several re-

searches arose to deal with different scenarios of the real 

world. In [2] the authors introduced a methodology to 

work with a multilayer fuzzy inference system dedicated 

to estimate the power demand in a substation feeder. A 

model that combine concepts of support vector ma-

chines, evolutionary artificial neural networks and fuzzy 

rules was presented in [3], and validated using datasets 

of time series that contain the number of passengers in 

an airlines company, the number of car sales and the 

amount of milk production among others. The financial 

area is one of the most common areas of applications 

used in the experiments about forecast problems. In [4], 

a model that combines the concepts of particle swarm 

optimization, fuzzy time series and support vector ma-

chines to do forecasts in the Taiwan Stock Exchange 

(TAIEX) index datasets is presented. A methodology 

that combines concepts of Autoregressive Integrated 

Moving Average (ARIMA) model with the concepts of 

Artificial Neural Network (ANN) is presented in [5] and 

applied to the money exchange rate scenario. 

It is possible to observe, from a literature review, that 

the integration of classic statistical models with the FTS 

concepts to address forecast problems has been little ex-

plored. However, such integration could favor the devel-

opment of several potential contributions. On one side, 

the advantages of traditional statistical forecasting meth-

ods are extensively pointed out. On the other side, some 

works have reported better accuracy by the FTS methods 

than traditional statistical methods, especially in time se-

ries with few samples or with irregular behavior [6, 7]. 

Towards this line of investigation, the authors of the 

present work have proposed recently an approach that 

combines FTS with simple exponential smoothing (SES) 

[8]. In this paper the method has been extended in several 

ways. The main contribution is the introduction of a new 

smoothing technique that is used with the Fuzzy Logical 

Relationships (FLR) extracted from fuzzy time series. 

The pre-processing method introduced in [9] is extended 

to include an additional step where the linguistic terms 

are defined over the edges of the time series domain. In 

addition, the introduced model aggregates to the fore-

casting the linear regression concepts that are applied 

when a suitable FLR to infer the forecasted value does 

not exist. The results obtained from experiments with 

TAIEX index were compared with eight others ap-

proaches found in the literature and confirm the good ac-

curacy of proposed model. 

The rest of this paper is organized as follows. Basic 

concepts of fuzzy time series and linear regression are 

presented in Section 2. The pre-processing model used 

and the new version of the forecasting model combining 

FTS with statistics concepts and including the new 

smoothing technique are introduced in Section 3. The ex-

periments and conclusions are discussed, respectively, in 

Section 4 and Section 5. 

 

2. Brief review of basic concepts 

In this section, the basic concepts of FTS and linear 

regression used in the proposed model are presented. 

 

2.1. Fuzzy time series 

FTS were initially introduced in [1], as a forecasting 

model built from concepts of linguistic terms introduced 

by Zadeh’s work [10]. According to [1], the basic defi-

nitions related to FTS are presented as following. 

 Definition 1: Let 𝑌(𝑡) (𝑡 = 1, 2, 3, … ) be the 

universe of discourse, which is a subset of ℝ. Consider 

the fuzzy sets 𝑓𝑖(𝑡) (𝑖 = 1, 2, 3, . . . ) defined in the 

universe of discourse 𝑌(𝑡). If 𝐹(𝑡) is a collection of 

𝑓𝑖(𝑡) (𝑖 = 1, 2, 3, . . . ), then, 𝐹(𝑡) is called a fuzzy 

time series on 𝑌(𝑡). 
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 Definition 2: Let 𝐹(𝑡) be caused by 𝐹(𝑡 − 1),
𝐹(𝑡 − 2), … , 𝐹(𝑡 − 𝑛) this model is called 𝑛th-or-

der fuzzy time series, and the fuzzy logical relation-

ships between them is represented by 𝐹(𝑡 − 𝑛),
… , 𝐹(𝑡 − 2), 𝐹(𝑡 − 1) → 𝐹(𝑡). 

The authors of the work in [1] also defined five basic 

steps that compose the forecast process by means of FTS. 

The first step is the definition of the universe of dis-

course. In the sequence, the universe of discourse is par-

titioned into several equal length intervals, on which the 

fuzzy sets will be defined. The third step is the fuzzifica-

tion of the crisp observed values. In the sequence, the 

forecasting is computed in the form of a fuzzy set. Fi-

nally, the linguistic value is defuzzified. 

 

2.2. Linear regression 

The simple linear regression [11] represents the rela-

tion between one dependent variable 𝑌 and one inde-

pendent variable 𝑋. This model has the purpose of defin-

ing an equation of a straight line that represents the 

smallest accumulated distance between the points plotted 

on the graphic and this straight line. In other words, the 

equation minimizes the sum of the deviations between 𝑦 

and 𝑦̂, where 𝑦 is the actual value and 𝑦̂ is the value de-

fined by equation of straight line. In our study 𝑌 and 𝑋 

are, respectively, the observed values in the time series 

and the time 𝑡. Thus, in this context, the linear regression 

provides a model that can be used to predict scores on 

variable 𝑌 from the relation identified between 𝑋 and 𝑌. 

Equation 1 represents this model. 

 

 𝑦𝑥̂  = 𝛽0 + 𝛽1𝑥 (1) 

 

where 𝑥 is the time index, 𝑦𝑥̂ is the predicted value in 

time 𝑥, 𝛽0 is the intercept, that is, the point where the 

straight line cuts the axis 𝑌 when 𝑥 is equal to zero, and 

𝛽1 is the slope, that represents the straight line angular 

coefficient, i.e., the value increased or decreased in 𝑌 for 

each increase of one unit in 𝑋. 

Least squares is the standard method used for estimat-

ing the parameters 𝛽0 and 𝛽1. Thus, 𝛽0 is estimated by 

Equation 2. 

 

 𝛽0 = 𝑦̅ − 𝛽1𝑥̅  (2) 

 

where 𝑦̅ and 𝑥̅ are the arithmetic mean of the observed 

samples for each variable, and 𝛽1is estimated by Equa-

tion 3. 

 

𝛽1 =
∑ 𝑥𝑖  𝑦𝑖 − 

(∑ 𝑥𝑖
𝑇
𝑖=1 ) (∑ 𝑦𝑖

𝑇
𝑖=1 )

𝑇
𝑇
𝑖=1
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𝑇
𝑇
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(3) 

 

where 𝑇 is the number of observed samples. 

 

3. Forecasting proposed model 

The forecasting model proposed in this article includes   

an extension to the pre-processing introduced in [9], a 

new smoothing technique and the use of linear regres-

sion. In the sequence, the pre-processing model and fore-

casting model are presented. 

 

3.1. Pre-processing model 

The purpose of the pre-processing phase is to identify 

and remove outliers, define the domain and the number 

of linguistic terms and, finally, define the support of each 

fuzzy set to fuzzify the time series. For this, an extension 

of pre-processing introduced in [9] is proposed to im-

prove the process by which the number and the support 

of linguistics terms are defined. 

Once the outliers have been identified and removed 

[9], the domain [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] is calculated by Equation 

4, where 𝜎 is the standard deviation, 𝑑𝑚𝑖𝑛 is the smallest 

observed value and 𝑑𝑚𝑎𝑥  is the highest observed value 

of the training samples. 

 

 𝐷 = [𝑑𝑚𝑖𝑛 − 𝜎, 𝑑𝑚𝑎𝑥 + 𝜎] (4) 

 

After the domain has been defined, the following six 

steps are used to calculate the number of linguistic terms 

according to [9].  

Step 1. Sort the 𝑡 numerical samples of the training 

dataset in ascending order. 

Step 2. Calculate the threshold 𝜏 of stop condition as 

in Equation 5, where 𝑡 is the index of the most recent 

sample and 𝑑𝑖 is the sample at time 𝑖. 
  

𝜏 =
∑ (𝑑𝑖+1 − 𝑑𝑖)

t−1
𝑖=1

𝑡 − 1
 (5) 

 

Step 3. Consider each crisp value in the time series as 

one cluster {𝑑1}, {𝑑2}, . . . , {𝑑𝑘}, where the symbol “{ } ” 

indicates a cluster, and 𝑘 is the total number of clusters. 

Step 4. Define the centroid 𝑐𝑖, 𝑖 =  1, 2, … , 𝑘. In clus-

ters with more than one sample, the centroid 𝑐𝑖 should be 

defined by the arithmetic mean of all samples in the clus-

ter. 

Step 5. Calculate the distance between centroids 𝑐𝑚 

and 𝑐𝑚+1, where 𝑚 = 1,2, … , 𝑘 − 1.  

Step 6. If the shortest distance identified in the previ-

ous step is smaller than the threshold 𝜏, then merge the 

elements of the respective clusters into a cluster contain-

ing elements of both clusters, update the index of the cen-

troids and go back to the Step 4. Otherwise, stop the al-

gorithm. 

The number 𝑘 of linguistics terms found by these pre-

vious steps will be used as the input parameter in the 

Fuzzy C-Means (FCM) algorithm [12], providing the 

number of clusters to the algorithm. The centroids result-

ing from the FCM algorithm will be used to define the 

central parameters of fuzzy triangular sets, which will be 

used to fuzzify the time series. 

The proposal to create the additional linguistic terms 

introduced in this paper, is composed by four steps and 

is presented as an extension to the procedure just de-

scribed. The aim of this proposal is to add new linguistic 

terms in the intervals [𝐷𝑚𝑖𝑛 , 𝑐1] and [𝑐𝑘 , 𝐷𝑚𝑎𝑥], to in-

crease the accuracy of forecasts in problems where the 

samples in the test dataset are smaller than 𝑑𝑚𝑖𝑛, or 
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higher than 𝑑𝑚𝑎𝑥 , respectively, smallest and highest ob-

served values in the training dataset. The four steps to 

aggregate the new linguistics terms are introduced next. 

Step 1. Calculate the arithmetic mean 𝑎𝑣𝑒𝑑𝑐  of the dif-

ferences between the centroids 𝑐𝑚 and 𝑐𝑚+1, where 𝑚 =
1,2, … , 𝑘 − 1. 

Step 2. Add triangular fuzzy sets to the interval 

[𝐷𝑚𝑖𝑛 , 𝑐1], while the central parameter of the triangular 

set being added is higher than or equal to 𝐷𝑚𝑖𝑛. Calculate 

the central parameter of the fuzzy sets by subtracting the 

average 𝑎𝑣𝑒𝑑𝑐from the centroid 𝑐1 for the first fuzzy set 

and from the last fuzzy set added for the next ones. If the 

central parameter of the first calculation is smaller than 

𝐷𝑚𝑖𝑛, add only one new triangular fuzzy set with central 

parameter defined by the arithmetic mean between 𝐷𝑚𝑖𝑛 

and 𝑐1. 

Step 3. Add triangular fuzzy sets, to the interval 

[𝑐𝑘 , 𝐷𝑚𝑎𝑥], using a process similarly to Step 2, summing 

the average 𝑎𝑣𝑒𝑑𝑐 to the central point of the last fuzzy 

set created, starting from 𝑐𝑘.  If the sum of 𝑎𝑣𝑒𝑑𝑐 with 

𝑐𝑘the is higher than 𝐷𝑚𝑎𝑥, add only one new triangular 

fuzzy set with central parameter defined by the mean be-

tween 𝐷𝑚𝑎𝑥 and 𝑐𝑘. 

Step 4. Update the indexes of centroids. 

Once the fuzzy sets have been defined, the crisp sam-

ples in the time series should be fuzzified and the 

knowledge base with fuzzy logic relations (FLR) should 

be created, before the forecasting method can be per-

formed. To fuzzify the time series, the observed samples 

are converted to the linguistic terms with the higher 

membership degree. 

 

3.2. Forecasting model 

In this forecasting model a new smoothing technique is 

used for smoothing the consequents of the FLR as well 

as the impact of the FLR results. Linear regression is 

used to assist the calculation of predicted value when 

there is no FLR available in the knowledge base to do the 

forecasting. 

After the fuzzification of the crisp samples, the sec-

ond-order FLRs in the form shown in Equation (6) are 

extracted from the fuzzified time series, 

 

 𝐿𝑖 , 𝐿𝑖+1 → 𝐿𝑖+2, 𝐿𝑖+3, 𝐿𝑖+4  (6) 

 

where 𝐿𝑖 is the linguistic term at time 𝑖. The set of all 

second-order FLR in the format of Equation 6 extracted 

from the time series represent the knowledge base of the 

system.  

When a forecast is to been done, the last two linguis-

tics terms 𝐿𝑡−1 and 𝐿𝑡 in the FTS indicate which FLR in 

the base will be used to compute the forecasted value. All 

FLRs in the base whose antecedents are 𝐿𝑖 = 𝐿𝑡−1 and 

𝐿𝑖+1 = 𝐿𝑡 will be used to compute the predicted value. 

To the forecasting proposed model, a new smoothing 

technique is introduced to be applied in the consequents 

of the FLR and in the values provide by them. The 

smoothing proposed is shown in Equation 7.  

 

𝑤𝑖 =  
𝛼𝑖

∑ 𝛼𝑗𝑛−1
𝑗=0

 (7) 

where 𝑤𝑖  is the smoothing weight for term 𝑖, 𝑛 is the 

number of terms to be smoothed and 𝛼 is the smoothing 

factor. As it is possible to observe in Equation 7, to ob-

tain the desired result, the index of the first smoothed 

term should be set to zero. For the smoothing factor, if 

0 < 𝛼 < 1,   the weight of the last terms will be smaller 

than the weight of the first terms being smoothed. If 𝛼 =
0, only the first term will be consider. When 𝛼 = 1, all 

terms will have the same weight and, if 𝛼 > 1, the 

weights of the last terms will be higher than first terms. 

To illustrate the behavior of the smoothing technique 

proposed, Figure 1 presents the smoothing weights   

when three terms are considered for 𝛼 values smaller 

than 1. 

 

 
Fig. 1: Smoothing weights for 𝛼 smaller than one. 

 

In the graphic shown in Figure 1, it is possible to ob-

serve that the smoothing weight decreases drastically 

when 𝛼 value is far from 1, as in the continuous line. If 

the 𝛼 value is close to 1, as in dashed line, the smoothing 

becomes softer. Figure 2 shows the behaviors of the 

smoothing weight for 𝛼 values higher than 1 considering 

three terms to be smoothed. 

 

 
Fig. 2: Smoothing weights for 𝛼 higher than one. 

 

In Figure 2, it is possible to observe that the smoothing 

weight increases drastically when 𝛼 values are far from 

1. Otherwise, if the 𝛼 value is close to 1, as in continuous 

line, the smoothing becomes softer.  

Assume that, to perform a forecast from a FTS 

with 𝐿𝑡−1 and 𝐿𝑡 as the two most recent values, there are   

𝐹  FLRs in the knowledge base with these values as an-

tecedents. The smoothing method introduced is applied 

to the consequents of these 𝐹 FLRs, and then each FLR 

provides a smoothed value 𝑆𝑓. Equation 8 shows how 

each 𝑆 value is obtained from the smoothing of the FLR. 
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 𝑆𝑓 = ∑ 𝑤𝑖
𝑛−1
𝑖=0 . 𝑙𝑖 (8) 

 
where 𝑆𝑓 is the smoothed value inferred by FLR 𝑓, 𝑓 =

0, 1, … , 𝐹 − 1, 𝑛 is the number of consequents in the 

FLR, 𝑙𝑖 are the crisp values of the linguistic terms in the 

consequent of FLR, that is, the central parameter of tri-

angular fuzzy set 𝐿𝑖 and 𝑤𝑖  is the smoothing weight ob-

tained by Equation 7. The purpose of the method pro-

posed here is to make the first term in the consequent of 

the FLR have a higher influence in the calculation of the 

inferred value, using a 𝛼 value smaller than one. How-

ever, this 𝛼 value can be adjusted as necessary to become 

suitable to different purposes. 

These 𝑆𝑓 values will compose a new series, where the 

value inferred by the oldest FLR will be the first sample 

of this new series. In an analogue way, the value inferred 

by Equation 8 using the most recent FLR with the ante-

cedents 𝐿𝑡−1 and 𝐿𝑡 , will be the last sample in the new 

series. The smoothing is then applied again to this new 

generated series in order to obtain the forecasted value. 

Equation 9 shows how the forecasted value is obtained. 

 
 𝑑𝑡+1 = ∑ 𝑤𝑓

𝐹−1
𝑓=0 . 𝑆𝑓 (9) 

 
In this equation 𝑑𝑡+1 is the forecasted value, 𝐹 is the 

total number of FLRs with the antecedents 𝐿𝑡−1 and 𝐿𝑡, 

𝑆𝑓 is the smoothed crisp value obtained by Equation 8 

through FLR 𝑓, and 𝑤𝑓 is the smoothing weight obtained 

by Equation 7 to ponder the value 𝑆𝑓. In this work, the 

purpose of the model is to make the last samples in the 

new series, which represent the most recent behavior in 

the original time series, to have the higher influence in 

the calculation of the forecasted value. For this purpose, 

the 𝛼 value should be set to a value higher than one. 

However, the smoothing factor can be adjusted to obtain 

the behavior as desired. 

When the knowledge base does not have at least one 

equivalent FLR to be used in the process of forecasting, 

some forecast methods use the centroid of the last lin-

guistic term in the FTS as the forecasted value [8, 13, 

14]. Aiming at increasing the accuracy in forecasting in 

these cases, in the proposed model the use of simple lin-

ear regression combined with FTS is introduced. The aim 

of this procedure is to identify the current behavior of the 

time series and use it to calculate the forecasted values. 

Considering that the slope 𝛽1, obtained by Equation 3 

(see section 2.2), indicates how the time series increases 

or decreases at each new time unit, we aggregate 𝛽1 to 

the crisp value 𝑙𝑡 that represents the last linguistic term 

𝐿𝑡 in the time series. Thus, the prediction is made as 

shown in Equation 10.  

 
 𝑑𝑡+1 = 𝑙𝑡 + 𝛽1 (10) 

 
where 𝑑𝑡+1 is the forecasted value. Since the objective of 

this form of calculation is to identify the recent trend of 

the series, a reduced number of the most recent samples 

should be used in the calculation of the slope, especially 

in time series with irregular or seasonal behavior. The 

use of linear regression in the forecasting model as de-

scribed, allows a better accuracy of the forecasting 

model. 

Regardless of the predicted value to be calculated by 

Equation 9 or by Equation 10, the last procedure in the 

forecasting process is to identify what is the linguistic 

term in which the forecasted value has the higher mem-

bership degree. The crisp value of this linguistic term 

will be the forecasting provided by the model. In the ex-

periments using the crisp value 𝑙𝑖 of linguistic term that 

represents 𝑑𝑡+1 calculated by Equation 9 or Equation 10 

as predicted value, it was possible to obtain a better ac-

curacy than using the value 𝑑𝑡+1 itself. 

Finally, in order to avoid that the initial FLR base be-

comes obsolete, after the arrival of a new sample, a new 

FLR is included in the base. To illustrate, consider that 

the four most recent linguistics samples in a FTS are 

𝐿𝑡−3,  𝐿𝑡−2, 𝐿𝑡−1 and 𝐿𝑡. With the arrival of a new sample 

𝐿𝑛, 𝑛 = 𝑡 + 1, the new FLR 𝐿𝑡−3,  𝐿𝑡−2  → 𝐿𝑡−1, 𝐿𝑡 , 𝐿𝑛 

will be added to the base. This feature allows the method 

to enhance the accuracy rate in scenarios where the test 

dataset presents a different behavior when compared 

with the training data. 
 

4. Experiments and results 

To demonstrate the effectiveness of the proposed model, 

the experiments were run using the TAIEX index be-

tween 2001 and 2004. In order to confirm the satisfactory 

accuracy of the proposed model, the results were com-

pared with eight others approaches by means of root 

mean squared error (RMSE). The samples from January 

to October of each year were used as the training dataset, 

and the samples from November and December were 

used as the test dataset. Table 1 shows the number of 

training samples, the number of test samples, the domain 

and the number of linguistics terms (LT) defined by the 

pre-processing for each time series. 
 

Table 1: Data of pre-processing in the TAIEX index. 
 

TAIEX 
Training 

Samples 

Test 

Samples 
Domain LT 

2001 201 43 [2732.30; 6818.20] 102 

2002 205 43 [3190.59; 7121.75] 86 

2003 206 43 [3580.74; 6666.89] 91 

2004 205 45 [4861.44; 7489.53] 108 
 

 

After the definition of the number of triangular fuzzy 

sets and their respective supports, the next step is to fuzz-

ify the crisp samples and extract the FLR to compose the 

knowledge base. As an example, consider the first six 

samples 5600.05, 5526.32, 5638.53, 5834.89, 5810.08 

and 5865.54 in the training dataset of the TAIEX 2002 

index. Their respective linguistics terms, according to 

Table 2, are 𝐿58, 𝐿56, 𝐿59, 𝐿63, 𝐿63 and 𝐿64. Thus, the first 

two second-order FLRs to be extracted, according to 

Equation 6, to compose the knowledge base are, respec-

tively, 𝐿58, 𝐿56 →  𝐿59, 𝐿63, 𝐿63 and 𝐿56, 𝐿59 →
𝐿63, 𝐿63, 𝐿64. 
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Table 2: Linguistics terms for TAIEX 2002 index and 

their respective representation values. 
 

Linguistic 

Term 
Value 

Linguistic 

Term 
Value 

0 3209.20 43 4919.11 

1 3254.98 44 4936.69 

2 3300.76 45 4966.86 

3 3346.54 46 5000.35 

4 3392.32 47 5044.12 

5 3438.10 48 5072.30 

6 3483.88 49 5127.79 

7 3529.66 50 5160.66 

8 3575.44 51 5251.76 

9 3621.22 52 5317.39 

10 3666.99 53 5394.30 

11 3712.77 54 5443.52 

12 3758.55 55 5499.93 

13 3804.33 56 5533.52 

14 3850.11 57 5566.81 

15 3917.56 58 5599.27 

16 3956.42 59 5631.98 

17 4071.91 60 5666.98 

18 4131.56 61 5696.33 

19 4167.11 62 5743.14 

20 4188.86 63 5805.63 

21 4208.86 64 5867.94 

22 4222.81 65 5966.14 

23 4280.93 66 6091.94 

24 4287.06 67 6276.42 

25 4328.56 68 6278.42 

26 4386.80 69 6324.20 

27 4430.67 70 6369.97 

28 4463.98 71 6415.75 

29 4531.21 72 6461.53 

30 4560.86 73 6507.31 

31 4579.39 74 6553.09 

32 4598.21 75 6598.87 

33 4635.28 76 6644.65 

34 4646.03 77 6690.43 

35 4660.64 78 6736.21 

36 4668.14 79 6781.99 

37 4700.41 80 6827.77 

38 4720.96 81 6873.55 

39 4766.15 82 6919.33 

40 4801.85 83 6965.11 

41 4854.20 84 7010.89 

42 4886.03 85 7056.66 
 

 

Once the FLR base has been defined, the forecasting 

process can be applied. The process starts by identifying 

the two most recent linguistics terms in the FTS to search 

for the equivalents FLR in the base. When one or more 

FLR are found, their consequents are smoothed by the 

process described in Section 3.2 and, each FLR infers a 

smoothed value 𝑆𝑓, 𝑓 = 0,1, … , 𝐹 − 1  where 𝐹 is the 

number of FLRs found. In the sequence, the values 𝑆𝑓 

are smoothed according to Equation 9 to produce a final 

inferred value. The crisp value of the linguistic term that 

better represents the number provide by Equation 9 will 

be the forecasted value defined by the model. 

Assume that 𝛼1 is the value used for smoothing the 

consequents of the FLR, therefore, used to define 𝑤𝑖  in 

Equation 8 and, 𝛼2 is the smoothing factor used to define 

𝑤𝑓 in Equation 9. Considering the different behaviors of 

the time series in the experiments, the smoothing factors 

are presented in Table 3. 
 

Table 3: Smoothing factors used in the experiments. 
 

TAIEX 𝛼1 𝛼2 

2001 0.5 1.2 

2002 0.4 0.2 

2003 0.1 0.1 

2004 0.4 7.0 
 

 

To illustrate the forecasting process, if we consider the 

34th prediction in the test dataset made for 2002/Dec/18, 

the two last linguistics terms of 2002/Dec/16 and 

2002/Dec/17 are, respectively, 𝐿31 and 𝐿29. Two FLR 

were found in the base, the first FLR 𝐿31, 𝐿29 →
𝐿28, 𝐿29, 𝐿36 and the second FLR 𝐿31, 𝐿29 →
𝐿31, 𝐿30, 𝐿38. Considering the smoothing factor 𝛼1 =
0.4, according to Equation 7 the smoothed weight for the 

consequents of the FLR are 0.64, 0.26 and 0.1, respec-

tively for the first, the second and the third linguistics 

terms in the consequents. From these two FLR and con-

sidering Equation 8, the inferred values were 𝑆0 =
4502.15 and 𝑆1 = 4589.15. Given 𝛼2 = 0.2, the result 

obtained by Equation 9 is 4542.37. Considering the cen-

tral parameter of the triangular fuzzy set with higher 

membership degree for this number, the forecasted value 

is 4531.21. 

If there is not an FLR in the base to do the forecast, the 

prediction will be calculated with the aid of linear regres-

sion. An important parameter of the model is how many 

samples will be used in the regression. In the performed 

experiments, this number was equal to twenty percent of 

the total samples in the training dataset. Considering the 

training dataset of the TAIEX 2002 index, the slope was 

calculated using the forty-one most recent samples. For 

example, to do prediction on 2002/Nov/25, sixteen ear-

lier samples were available in the test dataset. Thus, to 

complete the forty-one samples were necessary the 

twenty-five most recent samples of the training dataset, 

resulting in the predicted value 4720.95. The actual and 

the forecasted values for TAIEX indexes between 2001 

and 2004 are shown in Figures 3, 4, 5 and 6, respectively.  

 

 
 

Fig. 3: Actual and forecasted indexes for November and De-

cember 2001. 
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Fig. 4: Actual and forecasted indexes for November and De-

cember 2002. 

 

 

 
 

Fig. 5: Actual and forecasted indexes for November and De-

cember 2003. 

 

 

 
 

Fig. 6: Actual and forecasted indexes for November and De-

cember 2004. 

 

Besides the satisfactory accuracy obtained by the 

method, the graphics also allow us to assert that the be-

haviors of the forecasted time series are very similar to 

those presented by the actual time series. Table 4 shows 

the root mean square error for the proposed method with 

linear regression and without linear regression compared 

with eight others approaches available in the literature. 

The good performance of the proposed method indi-

cates the effectiveness of the model compared with clas-

sic approaches as exponential smoothing [12], and with 

others recent approaches found in the literature [4, 13, 

15, 16, 17, 18, 19]. An important feature observed in Ta-

ble 4 is the essential role of linear regression in the 

model. When compared with the model without linear 

regression, the accuracy increases, especially in the pre-

dictions where the FLRs were not found in the 

knowledge base to do the forecast. 

 

Table 4: RMSE for forecasts of TAIEX indexes be-

tween 2001 and 2004. 
 

Approach 2001 2002 2003 2004 Ave 

Brown and Meyer [12] 123.1 66.0 52.6 56.9 74.65 

Chen and Chen [15] 115.3 71.0 58.0 57.3 75.40 

Chen, et. al.[16] 114.4 67.1 52.4 52.8 71.68 

Santos and Camargo[13] 106.2 66.7 51.1 52.9 69.23 

Chen and Kao [4] 114.5 76.8 54.2 58.1 75.90 

Li and Chiang [17] 115.8 64.3 57.6 55.5 73.30 

Chen and Chen [18] 114.6 64.7 53.6 52.9 71.45 

Wang and Lee [19] 120.2 69.7 56.3 54.2 75.10 

Proposed method 1 107.5 64.8 49.2 52.2 68.43 

Proposed method 2 97.2 63.2 48.9 52.2 65.38 
1 without linear regression; 2 with linear regression 

 

5. Conclusions 

The forecasting model proposed in this article provides a 

significant contribution in a research area with growing 

interest and with a big potential for new developments. 

The combination of FTS with concepts and methods 

from statistics is certainly a promising field in the pre-

diction of time series. 

The first important feature of the proposed model is 

the improvement of the procedure to define the number 

of linguistics terms by the pre-processing method. This 

adjustment allowed increasing the accuracy in forecast-

ing problems where the test dataset has values out of the 

domain presented by the samples in the training dataset. 

Other important contribution of this paper, the smooth-

ing technique for time series, demonstrated to be coher-

ent and effective through the results obtained by the 

model. Besides that, the smoothing method introduced 

here allows the adjustment of the smoothing factor as 

necessary. 

Finally, the results showed the importance of the linear 

regression combined with the FTS and the smoothing 

process proposed. The combination of linear regression 

in the model provides a manner to improve the accuracy 

in situations where there are not equivalent FLRs in the 

base. 

For future works, the model can be improved to do an 

automatic adjustment of the best number of samples to 

be used in the linear regression. Other possible improve-

ment is the introduction of a dynamic domain, where 

new fuzzy sets can be aggregated up or down the limits 

of the initial domain, according to the current behavior 

of the test time series. 

 

References 

[1] Q. Song and B. S. Chissom: Fuzzy Time Series and 

its Models. Fuzzy Sets and Systems 54, pages 269–

277, Elsevier, 1993. 

[2] L. A. Moraes, R. A. Flauzino, M. A. Araújo and O. 

E. Batista: A Fuzzy Methodology to Improve Time 

1367



Series Forecast of Power Demand in Distribution 

Systems. 2013 IEEE Power and Energy Society Gen-

eral Meeting (PES), pages 1-5, IEEE, 2013.  

[3] M. Stepnicka, P. Cortez, J. P. Donate and L. Step-

nicková: Forecasting seasonal time series with com-

putational intelligence: On recent methods and the 

potential of their combinations. Expert Systems with 

Applications 40, pages 1981–1992, Elsevier, 2013. 

[4] S. M. Chen, P. Y. Kao: TAIEX forecasting based on 

fuzzy time series, particle swarm optimization tech-

niques and support vector machines. Information 

Sciences 247, pages 62–71, Elsevier, 2013.  

[5] G. P. Zhang: Time series forecasting using a hybrid 

ARIMA and neural network model. Neurocomputing 

50, pages 159–175, Elsevier, 2003. 

[6] M. N. Mehr, F. F. Samavati and M. Jeihoonian: An-

nual energy demand estimation of Iran industrial sec-

tor by Fuzzy regression and ARIMA. Eighth Inter-

national Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD), pages 593-597, 

IEEE, 2011. 

[7] C. C. Wang: A comparison study between fuzzy time 

series model and ARIMA model for forecasting Tai-

wan export. Expert Systems with Applications 38, 

pages 9296–9304, Elsevier, 2011. 

[8] F. J. J. Santos and H. A. Camargo: Forecasting in 

Fuzzy Time Series by an Extension of Simple Expo-

nential Smoothing. Proceedings of 14th Ibero-Amer-

ican Conference on AI, pages 257–268, Springer In-

ternational Publishing, 2014. 

[9] F. J. J. Santos and H. A. Camargo: Preprocessing in 

Fuzzy Time Series to Improve the Forecasting Accu-

racy. 12th International Conference on Machine 

Learning and Applications, pages 170-173, IEEE, 

2013. 

[10] L. A. Zadeh: The Concept of a Linguistic Variable 

and its Application to Approximate Reasoning - 

Part 1. Information Sciences 8, pages 199–249, 

Elsevier, 1975. 

[11] F. Galton: Natural Inheritance, 5th edition, New 

York, Macmillan and Company, page 226, 1894. 

[12] J. C. Bezdek, E. C. Tsao and N. R. Pal: Fuzzy Ko-

honen Clustering Networks. IEEE International 

Conference on Fuzzy Systems, pages 1035-1043, 

1992. 

[13] R. G. Brown and R. F. Meyer: The fundamental 

theory of exponential smoothing. Operations Re-

search 9, pages 673-685, 1961. 

[14] C. Cheng, G. Cheng and J. Wang: Multi-attribute 

fuzzy time series method based on fuzzy clustering. 

Expert Systems with Applications 34, pages 1235–

1242, Elsevier, 2008. 

[15] S. M. Chen and C. D. Chen: TAIEX Forecasting 

Based on Fuzzy Time Series and Fuzzy Variation 

Groups. IEEE Transactions on Fuzzy Systems 19, 

pages 1-12, IEEE, 2011. 

[16] K. Tanuwijaya and S. Chen: A new method to 

forecast enrollments using fuzzy time series and 

clustering techniques. Proceedings of the Eighth 

International Conference on Machine Learning 

and Cybernetics, pages 12-15, 2009. 

[17] C. Li and T. W. Chiang: Complex Neurofuzzy 

ARIMA Forecasting: A New Approach Using 

Complex Fuzzy Sets. IEEE Transactions on Fuzzy 

Systems 21, pages 567-584, IEEE, 2013. 

[18] S. M. Chen and S. W. Chen: Fuzzy Forecasting 

Based on Two-Factors Second-Order Fuzzy-Trend 

Logical Relationship Groups and the Probabilities 

of Trends of Fuzzy Logical Relationships. IEEE 

Transactions on Cybernetics, pages 1-5, IEEE, 

2014.   

[19] C. R. Wang and S.J. Lee: Temporal Prediction Us-

ing Self-Organizing Multilayer Perceptron. Pro-

ceedings of the 2014 International Conference on 

Machine Learning and Cybernetics, pages 585-591, 

IEEE, 2014.

 

1368




