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Abstract

We give a normalized expression for the solutions
to the initial value problem for some linear fuzzy-
interval differential equations by using a general no-
tation which allows the combination of two types of
differences. By switching between these types of dif-
ferences, we derive several expressions for solutions
corresponding to strongly generalized differentiabil-
ity, providing a general formulation for these solu-
tions to linear problems.

Keywords: Linear fuzzy differential equations,
Strongly generalized differentiability, Operations
with fuzzy intervals, Solutions

1. Introduction

The study of fuzzy differential equations has at-
tracted the interest of many researchers thanks to
the development of the concept of differentials of
fuzzy functions [2, 3, 5, 11, 15, 16, 31, 38] and other
useful techniques [17, 18, 25, 27, 34, 39], leading to
continuous advances in the solvability of this type
of equations since the publication of [19, 36, 20].
The analysis of uncertain systems has been de-

veloped from different points of view which in-
clude the use of several concepts of differences and
derivatives, such as the Hukuhara difference and
derivative [15, 20], strongly generalized derivative
[2, 3, 4, 8, 21], generalized Hukuhara difference
and differentiability [5, 11, 37, 38], but also from
different approaches such as differential inclusions
(starting in [17] and continuing, for instance, in
[10, 18, 35]), the use of different representations of
fuzzy numbers [39], the embedding of fuzzy sets on
spaces with a linear structure [34], the detailed anal-
ysis of the implications of Zadeh’s extension princi-
ple [7, 27, 33], the use of generalized metric spaces
[30] or the study of the connections between differ-
ent approaches [6, 8, 9] and the perspectives of the
problem [1].

The study of the initial value problems for linear
fuzzy differential equations has been accomplished
by many authors by using the different types of
derivatives [12, 13, 14, 21, 22, 24, 29, 36]. In the
literature, we can also find some results on periodic

boundary value problems [32] or even functional
fuzzy differential equations [23, 26]. Numerical ap-
proach has also been developed (see, for instance,
[28]).

Here, we do not discuss the advantages of the
different methods available to obtain the solution
to a fuzzy differential equation. The approach of
Zadeh’s extension principle to get a fuzzy solution
starting from a deterministic solution allows to ob-
tain a reasonable solution to the problem of inter-
est. This approach is not affected by the choice of a
different formulation for the linear problem as long
as the corresponding real equations are equivalent,
in such a way that the existence of a unique solu-
tion for all the equivalent real differential equations
allows to obtain a unique fuzzy solution by apply-
ing Zadeh’s extension principle. However, if we use
a fuzzy derivative to define the concept of solution,
then several similar differential equations (which co-
incide in the real case) might not be equivalent and
lead to solutions with very different properties.

It is considered (see [10]) that the approach fol-
lowing Zadeh’s extension principle is adequate since
it preserves some interesting properties of the clas-
sical solutions. Nevertheless, the computation using
this point of view can be difficult under certain cir-
cumstances [10], so that other approaches are useful
both as interesting methods by themselves and to
get approximations of the problem.

Moreover, the analysis of fuzzy differential equa-
tions based on different concepts of fuzzy derivatives
is also an interesting issue (see [4]), in addition to
the achievements related to the treatment of the
problem without the requirement of a fuzzy deriva-
tive concept. Therefore, this study is motivated by
the interest arisen in the study of the properties of
the solutions to fuzzy differential equations by us-
ing different types of derivatives, which are adapted
to the special structure and particularities of fuzzy
intervals, in such a way that the behavior of the so-
lutions to fuzzy problems may differ substantially
from the classical case.

The formulation used in this work is based on the
use of strongly generalized differentiability, since the
corresponding solutions show interesting behavior
and properties which vary depending on the type
of differentiability chosen, being adapted to diverse
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situations. As mentioned above, there are other
approaches independent of the particularities of a
fuzzy derivative such as Zadeh’s extension principle
and differential inclusions’ approach, which are also
interesting.
For the essential concepts on fuzzy sets and fuzzy

differential equations, we refer, for instance, to
[15, 25]. Some additional notation needed for this
contribution can be also found, for instance, in the
references [3, 19].

2. Preliminaries

We consider here the space of fuzzy intervals RF
(the set of mappings from R to [0, 1] which are
normal, upper semi-continuous, fuzzy-convex and
compact-supported). For u ∈ RF and 0 < α ≤ 1,
we can define the α-level set of u by the expression

[u]α = {t ∈ R : u(t) ≥ α}

and the set [u]0 = {t ∈ R | u(t) > 0} is called the
support of u.
By the properties of fuzzy intervals, the α-level

set of u ∈ RF is a compact interval, for every α.
For the solvability of differential equations over the
space of fuzzy intervals, it is very useful the nota-
tion [u]α = [uα, uα], α ∈ [0, 1], for the level sets.
Besides, in the space RF , the operations of sum
u + v and multiplication by a real scalar λ · u are
defined levelwise:

[u+ v]α = [u]α + [v]α, [λ · u]α = λ[u]α,∀α ∈ [0, 1].

The space RF is a complete metric space [15] with
the distance D defined as

D(u, v) = sup
α∈[0,1]

max{|uα − vα|, |uα − vα|},

for u, v ∈ RF . We use the concept of integration
for fuzzy-valued functions as given in [3].

Concerning the different approaches in the solv-
ability of fuzzy differential equations, we consider
here strongly generalized differentiability and we
use a simple notation which allows the combination
of two types of differences, with the aim of finding
a common framework to compare the different ex-
pressions known. As mentioned, other approaches
are, for instance, those in [4, 8, 27, 29, 30, 38, 39].

Definition 1 Given u, v ∈ RF , if there exists z ∈
RF such that u = v + z, then we say that z is the
H-difference of u and v (denoted u	 v).

Note that this concept of difference is not equiv-
alent to the addition of the opposite element.

Next, we recall the concept of generalized differ-
entiability as introduced in [3] (see also [4, 8, 23, 28])
for fuzzy functions defined on I ⊆ R an open inter-
val.

Definition 2 ([3]) Let F : I → RF and fix t0 ∈ I.
We say that F is differentiable at t0 if there exists
an element F ′(t0) ∈ RF such that either:

(i) for all h > 0 sufficiently close to 0, the H-
differences F (t0 +h)	F (t0), F (t0)	F (t0−h)
exist and the limits (in the metric D)

lim
h→0+

F (t0 + h)	 F (t0)
h

= lim
h→0+

F (t0)	 F (t0 − h)
h

= F ′(t0),

or

(ii) for all h > 0 sufficiently close to 0, the H-
differences F (t0)	F (t0 +h), F (t0−h)	F (t0)
exist and the limits (in the metric D)

lim
h→0+

F (t0)	 F (t0 + h)
−h

= lim
h→0+

F (t0 − h)	 F (t0)
−h

= F ′(t0).

In the references [3, 8], the fundamental properties
of this derivative can be found.

Definition 3 Given u, v two fuzzy intervals, by
u 	̂ v we denote either the H-difference u 	 v (pro-
vided it exists) or the addition of the opposite ele-
ment u+ (−1)v.

In Definition 3, the notation 	̂ represents the pos-
sibility of choosing one of the two options, in the
sense that both of them are possible in many cases.
Depending on the particular choice, different situa-
tions may appear.

In this note, the use of this general notation 	̂
allows to give a uniform expression for the solutions
to some linear fuzzy differential equations depend-
ing on the particular meaning we give to u 	̂ v. Of
course, the interpretation of u 	̂ v as u 	 v is sub-
ject to its existence, which has to be checked ap-
propriately but, here, we are mainly interested in
the usefulness of this notation to give uniform ex-
pressions for the solutions to linear fuzzy differential
equations.

3. Solving fuzzy linear differential equations

The initial value problem{
y′(t) = a(t)y(t) + b(t), t ∈ I,
y(0) = y0,

(1)

was considered in [4], where y0 ∈ RF , a : I → R
and b : I → RF and this problem is not equivalent
to any of the following:{

y′(t) + (−a(t))y(t) = b(t),
y(0) = y0

(2)

or {
y′(t) + (−b(t)) = a(t)y(t),
y(0) = y0,

(3)
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which are not equivalent either (see [4]). Moreover,
if y is simultaneously a solution to (1) and (2), then
it is necessarily real. It is also well-known [4], that
there exists no fuzzy (non-real) solution to problem{

y′(t) + (−b(t)) + (−a(t))y(t) = 0̃,
y(0) = y0.

(4)

In this note, we provide a normalized expression
for the solutions to problems (1)–(3) from the point
of view of the use of the notation 	̂, which allows
to formulate the strongly generalized differentiable
solutions under a common style.
In what follows, the coefficients a and b in the

above-mentioned problems are continuous functions
in an open interval I ⊆ R (a : I → R, b : I → RF )
and the initial condition y0 is a fuzzy interval.
As a background for our study, the expressions

of the solutions to some equations of types (1)–(3)
are provided in [4]. Besides, in [22], the general ex-
pression of the solutions to (1) are studied in terms
of the sign of the coefficient a. We include these
expressions here for completeness.
In what follows, for simplicity, we also use the

notation

ϕ(t) =
∫ t

0
a(u)du, t ∈ I.

Theorem 1 ([22]) For a < 0, the (i)-solution to
problem (1) is given by

y1(t) = cosh(ϕ(t))
(
y0 +

∫ t

0
ψ(s)ds

)
+ sinh(ϕ(t))

(
y0 +

∫ t

0
ψ(s)ds

)
,

where

ψ(s) = b(s) cosh(ϕ(s))	 b(s) sinh(ϕ(s)),

provided that the above H-differences exist.
On the other hand, for a < 0, the (ii)-solution to

problem (1) is given by

y2(t) = eϕ(t)
(
y0 	

∫ t

0
(−b(s))e−ϕ(s)ds

)
,

provided that the H-differences exist.

Proof: See [4] for the expression of the (ii)-solution
and [22] for the expression of the (i)-solution. �

Theorem 2 ([22]) For a > 0, the (i)-solution to
problem (1) is given by

y3(t) = eϕ(t)
(
y0 +

∫ t

0
b(s)e−ϕ(s)ds

)
.

On the other hand, for a > 0, the (ii)-solution to
problem (1) is given by

y4(t) = cosh(ϕ(t))
(
y0 	

∫ t

0
φ(s) ds

)
	− sinh(ϕ(t))

(
y0 	

∫ t

0
φ(s) ds

)
,

provided the previous H-differences exist, where

φ(s) = b(s) sinh(ϕ(s))− b(s) cosh(ϕ(s)).

Proof: The case of the (i)-solution can be seen in
[4], while the (ii)-solution is considered in [22]. �

On the other hand, the solutions to problems (2)
and (3) are provided in [4, 24].

Theorem 3 ([24]) Let a < 0 and consider

y5(t) = eϕ(t)
(
y0 +

∫ t

0
b(s)e−ϕ(s)ds

)
(5)

and

y6(t) = cosh(ϕ(t))
(
y0 	 (−1)

∫ t

0
ψ(s) ds

)
+ sinh(ϕ(t))

(
y0 	 (−1)

∫ t

0
ψ(s) ds

)
,

(6)

where ψ is defined in Theorem 1, provided that the
H-differences in (6) and the expression of ψ exist.
Then the following assertions are valid:

• y5 is a (i)-solution to problem (2) on I (if it is
(i)-differentiable on I).

• y6 is a (ii)-solution to problem (2) on I (if it
is (ii)-differentiable on I).
• y5 is a (ii)-solution to problem (3) on I (if it
is (ii)-differentiable on I).
• y6 is a (i)-solution to problem (3) on I (if it is
(i)-differentiable on I).

Theorem 4 ([24]) Let a > 0 and consider

y7(t) = cosh(ϕ(t))
(
y0 −

∫ t

0
φ(s) ds

)
	− sinh(ϕ(t))

(
y0 −

∫ t

0
φ(s) ds

)
,

(7)

provided that the levelwise H-differences define, for
each t ∈ I, a fuzzy interval y7(t) (φ is given in The-
orem 2) and

y8(t) = eϕ(t)
(
y0 	

∫ t

0
(−b(s))e−ϕ(s)ds

)
, (8)

provided that the previous H-differences exist.
Then the following assertions are valid:

• y7 is a (i)-solution to problem (2) on I (if it is
(i)-differentiable on I).

• y8 is a (ii)-solution to problem (2) on I (if it
is (ii)-differentiable on I).
• y7 is a (ii)-solution to problem (3) on I (if it
is (ii)-differentiable on I).
• y8 is a (i)-solution to problem (3) on I (if it is
(i)-differentiable on I).

Remark 1 From the previous results, it is obvi-
ous that the expressions y2 and y8 are equal (pro-
vided they exist) and the same for y3 and y5. How-
ever, note that the use of their respective expressions
strongly depends on the sign of a.
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Next, we give a uniform expression for the solu-
tions obtained in Theorems 1–4, by the introduc-
tion of the general notation of the difference 	̂. In
the following, we represent with the symbol (∗) the
cases where the choice 	̂ = 	 is used, so that ad-
ditional restrictions have to be imposed in order
to guarantee the existence of the corresponding H-
differences.
First, we provide the expression which generalizes

y2 (or y8) and y3 (or y5) under a common frame.

Theorem 5 The function

y(t) = eϕ(t)
(
y0 	̂ (−1)

∫ t

0
b(s)e−ϕ(s)ds

)
(9)

represents, for a < 0:

• (ii)-solution to problem (1) (∗);
• (i)-solution to problem (2), provided it is (i)-
differentiable;
• (ii)-solution to problem (3), provided it is (ii)-
differentiable

and, for a > 0:

• (i)-solution to problem (1);
• (ii)-solution to problem (2), if it is (ii)-
differentiable (∗);
• (i)-solution to problem (3), if it is (i)-
differentiable (∗).

Proof: Indeed, if we interpret 	̂ as 	 in (9), we ob-
tain the functions y2 and y8. On the other hand, if
u 	̂ v is understood as u+(−1)v in (9), then we ob-
tain the functions y3 and y5. The conclusion follows
from Theorems 1–4. �

Concerning expressions y1, y4, y6 and y7, we con-
sider the following function (provided it is well-
defined):

y(t) = cosh(ϕ(t))
(
y0 	̂ (−1)

∫ t

0
γ(s) ds

)
	̂ − sinh(ϕ(t))

(
y0 	̂ (−1)

∫ t

0
γ(s) ds

)
,

where

γ(s) = b(s) cosh(ϕ(s)) 	̂ b(s) sinh(ϕ(s)).

In order to represent that any of the 	̂ differ-
ences can be chosen differently (if the correspond-
ing function exists), we rewrite this expression by
using the differences 	̂1, 	̂2 and 	̂3, in such a way
that the three of them represent 	̂ but they can be
interpreted in the same or different sense, by choos-
ing one of the interpretations given in Definition 3.
This way, we work with the function

y(t) = cosh(ϕ(t))
(
y0 	̂1 (−1)

∫ t

0
γ(s) ds

)
	̂2 − sinh(ϕ(t))

(
y0 	̂1 (−1)

∫ t

0
γ(s) ds

)
(10)

and

γ(s) = b(s) cosh(ϕ(s)) 	̂3 b(s) sinh(ϕ(s)), (11)

where the differences can be switched, provided the
resulting function is well-defined. Taking different
combinations of the differences 	̂1, 	̂2 and 	̂3, we
prove that we can derive the different types of solu-
tions, so that (10)–(11) will represent a normalized
expression for all the solutions given in Theorems 1–
4. We stress the fact that (10) gives uniformity to
the various expressions, more than paying attention
to the conditions guaranteeing the good definition
of the function itself.

To simplify the proof of the following result, we
define 	1 and 	2, respectively, by u 	1 v = u 	 v
and u 	2 v = u+ (−1)v.
Theorem 6 The function defined by (10)–(11)
represents, for a < 0:
• (i)-solution to problem (1);
• (ii)-solution to problem (2), if it is (ii)-
differentiable (∗);
• (i)-solution to problem (3), if it is (i)-
differentiable (∗)

and, for a > 0:
• (ii)-solution to problem (1) (∗).
• (i)-solution to problem (2), if it is (i)-
differentiable (∗);

• (ii)-solution to problem (3), if it is (ii)-
differentiable (∗).

Proof: In (10)–(11), if we take 	̂1 = 	̂3 = 	1 = 	
and 	̂2 = 	2, then γ ≡ ψ and we obtain function
y6, so that, in case of existence and differentiability
and for a < 0, we have a (ii)-solution to problem (2)
or a (i)-solution to problem (3) (see Theorem 3).

On the other hand, if we take 	̂1 = 	̂2 = 	2 and
	̂3 = 	1 = 	, then γ ≡ ψ again and we obtain
function y1, which, from Theorem 1 is, for a < 0,
the (i)-solution to problem (1).

If we select 	̂1 = 	̂2 = 	1 = 	 and 	̂3 = 	2,
then

y(t) = cosh(ϕ(t))
(
y0 	 (−1)

∫ t

0
γ(s) ds

)
	− sinh(ϕ(t))

(
y0 	 (−1)

∫ t

0
γ(s) ds

)
and
−γ(s) =− (b(s) cosh(ϕ(s))− b(s) sinh(ϕ(s)))

=φ(s),

so that we obtain function y4, which is, from The-
orem 2 and for a > 0, the (ii)-solution to problem
(1).

Finally, if 	̂1 = 	̂3 = 	2 and 	̂2 = 	1 = 	, then

y(t) = cosh(ϕ(t))
(
y0 +

∫ t

0
γ(s) ds

)
	− sinh(ϕ(t))

(
y0 +

∫ t

0
γ(s) ds

)
,
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where γ ≡ −φ, so that we obtain function y7, which
is, from Theorem 4 and for a > 0, a (i)-solution to
problem (2) or a (ii)-solution to problem (3). �

Moreover, expressions (10)–(11) are also a gener-
alization of (9). This way, (10)–(11) gives a uniform
expression for the different solutions obtained.

Theorem 7 The function defined by (10)–(11)
generalizes the expression of all the solutions
y1, . . . , y8 given in Theorems 1–4.

Proof: This comes from the fact that the func-
tion defined by (10)–(11) includes the expression
(9) and the proof of Theorems 5–6. Indeed, de-
note C(t) :=

(
y0 	̂1 (−1)

∫ t
0 γ(s) ds

)
(understand-

ing that it is well-defined).
In the case a > 0, we have ϕ(t) > 0 and

cosh(ϕ(t)) > sinh(ϕ(t)) > 0, thus, if we consider
	̂2 = 	2 in (10), we get

y(t) = cosh(ϕ(t))C(t) + sinh(ϕ(t))C(t)
= (cosh(ϕ(t)) + sinh(ϕ(t)))C(t) = eϕ(t)C(t).

Besides, if 	̂3 = 	1 = 	, since a > 0,

γ(s) = b(s) cosh(ϕ(s))	 b(s) sinh(ϕ(s))
= b(s) (cosh(ϕ(s))− sinh(ϕ(s)))
= b(s)e−ϕ(s),

so that we have

y(t) = eϕ(t)
(
y0 	̂1 (−1)

∫ t

0
b(s)e−ϕ(s) ds

)
and it coincides with (9).
On the other hand, if a < 0, we have ϕ(t) < 0 and

cosh(ϕ(t)) > − sinh(ϕ(t)) > 0, thus, if we consider
	̂2 = 	1 = 	 in (10), we obtain

y(t) = cosh(ϕ(t))C(t)	− sinh(ϕ(t))C(t)
= (cosh(ϕ(t)) + sinh(ϕ(t)))C(t) = eϕ(t)C(t),

where we have used that λu 	 µu = (λ − µ)u, for
λ > µ > 0. Furthermore, taking 	̂3 = 	2, since
a < 0, we have

γ(s) = b(s) cosh(ϕ(s))− b(s) sinh(ϕ(s))
= b(s) cosh(ϕ(s)) + b(s)(− sinh(ϕ(s)))
= b(s) (cosh(ϕ(s))− sinh(ϕ(s)))
= b(s)e−ϕ(s)

and we deduce again the expression (9).
Therefore, as in the proof of Theorem 5, the

choice of 	̂1 determines if y = y2 = y8 (	̂1 = 	1 =
	) or y = y3 = y5 (	̂1 = 	2). �

Remark 2 For the case a ≡ 0, each of the problems
(1)–(3) are reduced to

y′(t) = b(t), t ∈ I, y(0) = y0.

In this case,

y1(t) = y3(t) = y5(t) = y7(t) = y0 +
∫ t

0
b(s) ds

and

y2(t) = y4(t) = y6(t) = y8(t) = y0 	
∫ t

0
(−b(s)) ds

(subject to its existence). It is clear that, for a ≡ 0,
(11) gives γ ≡ b and (10) is reduced to

y(t) = y0 	̂ (−1)
∫ t

0
b(s) ds,

while (9) produces the same expression. It is obvious
that the previous function coincides with y2k, for
k = 1, . . . , 4, if 	̂ = 	, and it is exactly y2k+1, for
k = 0, . . . , 3, if 	̂ = 	2.

To conclude, in Table 1, we summarize the solu-
tions obtained as particular cases of (10)–(11) de-
pending on the choices of the differences 	̂1, 	̂2
and 	̂3, for a non null. There, we indicate with
the symbol (∗) the requirement of the existence of
the corresponding H-differences and with (d) the
requirement of the differentiability of the function
involved.

	̂2 = 	 	̂2 = 	2

	̂1 = 	

	̂3 = 	2,
a < 0

Function y2 (∗)
(ii)-sol. to (1)

	̂3 = 	2,
a > 0

Function y4 (∗)
(ii)-sol. to (1)

	̂3 = 	,
a < 0

Function y6 (∗)
(ii)-sol. to (2) (d)
(i)-sol. to (3) (d)

	̂3 = 	,
a > 0

Function y8 (∗)
(ii)-sol. to (2) (d)
(i)-sol. to (3) (d)

	̂1 = 	2

	̂3 = 	2,
a < 0

Function y5
(i)-sol. to (2) (d)
(ii)-sol. to (3) (d)

	̂3 = 	2,
a > 0

Function y7 (∗)
(i)-sol. to (2) (d)
(ii)-sol. to (3) (d)

	̂3 = 	,
a < 0

Function y1 (∗)
(i)-sol. to (1)

	̂3 = 	,
a > 0

Function y3
(i)-sol. to (1)

Table 1: Particular solutions obtained from (10)–
(11) depending on 	̂1, 	̂2 and 	̂3.
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