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Abstract

For the fuzzy systems with the kernel-shaped fuzzy sets of if part, we estimate the rates of the uniform
approximation for continuous functions. Results are given associatively with the rates of convergence of
the sequence(logk/k)α .
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1. Introduction

As an intelligent system of soft computing tech-
nique, fuzzy system (FS) is an efficient tool to deal
with nonlinearly complex systems, in which there
are linguistic information and data information, si-
multaneously. One most important advantage of us-
ing fuzzy systems is that linguistic fuzzy IF - THEN
rules are naturally utilized in the systems. Linguistic
fuzzy IF - THEN rules can be developed by human
experts who are familiar with the process under con-
sideration. Fuzzy systems have been developed to
solve many different practical problems such as pat-
tern recognition1, system identification2, adaptive
control3,4,5,6, etc. Fuzzy systems offer a key advan-
tage over traditional approaches, expecially in fuzzy
control systems. They offer model-free estimation
of the control system. The user need not specify how
the controller output mathematically depends on its
input. Instead, the user provides a statistically repre-
sentative set of numerical training samples. Even if
a math-model controller is available, fuzzy systems

may prove more robustly and easily to modify. If
experts provide structured knowledge of the control
process or if sufficient numerical training samples
are unavailable, the fuzzy approach may be prefer-
able. We can use the numerical data to generate
fuzzy rule base. Each fuzzy rule base defines a patch
in the input-output state space, and the fuzzy system
approximates the unknown function by covering its
graph with fuzzy rule base patches.

In most of applications of the fuzzy systems, the
main design objective can be transformed to find de-
signed mapping from the input spaces to the out-
put spaces, which may also be denoted as function.
Thus, problems of designing fuzzy systems can be
considered as approximation problems of functions.
As an important research topic related to fuzzy sys-
tems, the approximation capability of fuzzy systems
has been studied in theory and in application in the
past few years (see7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

etc).

When those authors researching on the approxi-
mation accuracy theory of fuzzy systems, they deal
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mainly with three questions: (1) universal approx-
imation; (2) constructive approximation; (3) ap-
proximation rates. The first and the second ques-
tions are answered widely in the last few years (see
6,10,11,12,13,14,17,18). However, there is still a lack
of the theoretical estimations of the approximation
rates of fuzzy systems (see15). The approxima-
tion rates plays a key role in answering the question:
what, if any, are the advantages of fuzzy systems as
function approximators over the other methods such
as the polynomial, spline, trigonometric, wavelets,
neural networks (see22,23,24,25,26). So that, in the
present paper, we prove that the fuzzy systems (with
the kernel-shaped fuzzy sets of if part) have the uni-
versal approximation properties for any continuous
function f defined onU ⊂ R. Furthermore, we es-
timate the uniform approximation rates of the fuzzy
systemFk, where the uniform approximation rates
are defined as follows:

‖Fk(◦)− f (◦)‖∞ = sup
x∈U

|Fk(x)− f (x)|.

One of the main features in the design of fuzzy
systems for approximation functions is the flexibil-
ity in choosing their components such as member-
ship functions, fuzzy inference engine, and defuzzi-
fication procedures, etc. Thus the problem of robust-
ness of fuzzy systems arises. The choices of the in-
put variables membership functions is quite impor-
tant as it could affects substantially its output behav-
ior. In this paper, the input membership functions
of a fuzzy system are generated by the translations
and scale transformations of a fixed kernel function.
By using test functions methods in Fourier analy-
sis, we explain how the shape of the input member-
ship functions determines the approximating capa-
bility of the fuzzy systems. This choice has a num-
ber of advantages. One of them is that if the origi-
nal function is intuitively meaningful, then the ker-
nel constructed will be also intuitively meaningful.
An other advantage is that the kernel can change
their width and move on the real space to be able
of representing different linguistic variables. But the
main advantage of this construction is the flexibility
and the ease of propagating properties of the original
function to all other membership functions.

The paper is organized as follows. In section

2 some necessary notations and preliminaries are
introduced. Fuzzy systems with kernel shapes of
fuzzy sets are constructed in this section from train-
ing data. The universal approximation property of
fuzzy system for a continuous function is proved in
section 3. Our main results are given in section 4
with two methods to estimate the rates of approxi-
mation of fuzzy systems with kernel shapes of fuzzy
sets to any continuous function. Some numerical ex-
amples will be stated in section 5 to illustrate our re-
sults. Finally, some conclusions are given in section
6.

2. Preliminaries

Assume that the analytical form of a continu-
ous function f (x) defined on the closed interval
U = [−1+δ0,1−δ0]⊂R, (0< δ0 < 1) is unknown,
while the input output behavior off (x) for any
x ∈ U is known. In this case,f (x) is similar to a
black box. Assume that the input - output data of
f onU are{xi ,yi}k

i=1, where{xi}k
i=1 are considered

as a random sample of sizek from the absolute con-
tinuous distribution functionH(x) with the density
functionh(x) andyi = f (xi), i = 1, ...,k. Generally,
the training data{xi}k

i=1 could be a random sample
from any distribution function; however,h(x) is de-
termined in this paper by the denominator of a fuzzy
system and is only required to be bounded away
from 0 inU by someε0 > 0, i.e.,h(x) > ε0 for any
x ∈ U . Theoretically, the size of a random sample
could be arbitrarily (See in27 for more details).

Let C(U) be the set of the continuous functions
defined onU with the supremum norm

‖ f‖C(U) = sup
x∈U

| f (x)|,

and for anyx∈Uc, f (x) is defined to be zero. Recall
thatL1(R) is the space of all integrable functions on
R. In this paper, the membership functions of each
input variable are chosen as kernel shapes. Some
related notations, concepts and properties are intro-
duced below.

Definition 1. [see in 28] A set of functions
{χ(◦,σ),σ > 0} will be called a kernel on the real
Euclid spaceR if for any σ > 0 we haveχ(◦,σ) ∈
L1(R) and

∫
R

χ(x,σ)dx= 1.
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Definition 2. [see in28] A kernel{χ(◦,σ),σ > 0} is
called an approximation identity kernel if there ex-
ists a constantM > 0 such that

i)
∫

R

|χ(x,σ)|dx6 M, ∀σ > 0,

ii) lim
σ→0

∫

‖x‖>δ
|χ(x,σ)|dx= 0, ∀δ > 0.

Following lemma gives a construction kernel
from a integrable function inL1(R) and can be
proved similarly to Lemma 2.2 in12.

Lemma 1.Suppose thatχ ∈ L1(R) and
∫
R

χ(x)dx 6=

0 then
{

1
σ χ( x

σ ),σ > 0
}

confirms an approximation
identity kernel.

Now, let χ ∈ L1(R),
∫
R

χ(x)dx 6= 0 andχ(x) >
0, ∀x ∈ R. A translation and scale transformation
of χ is defined as1

σ χ(x−α
σ ), wherex ∈ R, α is the

translation factor andσ is the scale factor. Suppose
that {σk,k ∈ N} are regularizing scale factors, that
is

i) σk > 0, ∀k∈N; lim
k→+∞

σk = 0

ii)
∞

∑
k=1

exp(−η
√

kσ2
k )<+∞, ∀η > 0.

Set

χk(x) :=
1
σk

χ(
x

σk
). (1)

It follows from Lemma 1 that{χk(x),σk} confirms
an approximation identity kernel onR. Further-
more, we can suppose that 06 χk(x) 6 1 for all
x ∈ U, for all k and {χk(x− xi)}k

i=1 construct an
ε0−complete partition onU , 0< ε0 6 1 (see21), i.e.,

1
k

k

∑
i=1

χk(x−xi)> ε0, ∀x∈U,

where{xi}k
i=1 ⊂ U is the random sample with the

density functionh(x) ∈C(U).
In this paper, we introduce the mathematical for-

mula of fuzzy systems in the single input - single
output (SISO) case. Withk rules, a fuzzy system is

denoted byFk : R→ R, which comprises four prin-
cipal components: singleton fuzzifier, product infer-
ence engine, center-average defuzzifier (see4,29 for
more details) and the fuzzy rule base. The fuzzy rule
base storesk rules

Ri : IF x is Ai THEN y is Bi

(i = 1,2, ...,k), whereAi(i = 1,2, ...,k) are the if-part
sets andBi(i =1,2, ...,k) are the then-part sets,x∈U
is the input variable andy∈R is the output variable.
Assuming that the then-part sets are singleton fuzzy
sets, the rules can be rewritten in the following form

Ri : IF x is Ai THEN y= yi

(i = 1,2, ...,k), whereyi is the point inR at which
Bi(y) achieves its maximum value. Letµi(x) be the
fuzzy membership function corresponding to the if-
part setAi. Clearly, in the SISO case, the fuzzy sys-
tem can be expressed as follows:

Fk(x) =
k

∑
i=1

[
µi(x)

k
∑

i=1
µi(x)

]
yi . (2)

Therefore, with the kernel (1), the fuzzy system (2)
can be rewritten in the following form:

Fk(x) =
k

∑
i=1

[
χk(x−xi)

∑k
j=1 χk(x−x j)

]
yi , (3)

wherex∈U andyi are the corresponding outputs of
xi , i = 1, ...,k.

Assume thatf ∈C(U). For simplicity, we intro-
duce some following notations that are used fluently
in the last.

Set(−∞,x] := {u∈U |u6 x}. Denote

Hk(x) =
1
k

k

∑
i=1

I(−∞,x](xi).

fk(x) =
1

kσk

k

∑
i=1

f (xi)χ(
x−xi

σk
)

=

∫

R

f (u)χk(x−u)dHk(u).

E[ fk(x)] =
∫

R

f (u)χk(x−u)dH(u).
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gk(x) =
1

kσk

k

∑
i=1

χ(
x−xi

σk
)

=
∫

R

χk(x−u)dHk(u).

E[gk(x)] =
∫

R

χk(x−u)dH(u).

F̂k(x) =
E[ fk(x)]
E[gk(x)]

.

3. Approximation property

In this section, by using Fourier analysis technol-
ogy, we explain how the fuzzy systems (3) with the
kernel-shaped if part of fuzzy sets can approximate
for a continuous function. At first, we have follow-
ing lemma, that can be proved similarly to Theorem
3.1.6 in28.

Lemma 2. Suppose that{χ(◦,σ),σ > 0} is an ap-
proximation identity kernel, then for any f∈ C(U)
we have

lim
σ→0

‖I( f ,◦,σ)− f (◦)‖∞ = 0,

where

I( f ,x,σ) =

∫

R

f (u)χ(x−u,σ)du.

Following theorem gives the universal approx-
imation of the fuzzy system (3) for any function
f ∈C(U).

Theorem 3. Suppose that f∈C(U). Then for every
ε > 0, there exists N0 ∈N such that

‖Fk(◦)− f (◦)‖∞ < ε

for all k > N0 almost sure (a.s.).

Proof. We have

‖Fk− f‖∞ 6 ‖Fk− F̂k‖∞ +‖F̂k− f‖∞ = I1+ I2.
(4)

At first, we considerI1. One has

|Fk(x)− F̂k(x)| =
∣∣∣∣

fk(x)
gk(x)

− E[ fk(x)]
E[gk(x)]

∣∣∣∣

6
1

|gk(x)|

∣∣∣∣ fk(x)−E[ fk(x)]

∣∣∣∣

+
|E[ fk(x)]|

|gk(x)||E[gk(x)]|
|E[gk(x)]−gk(x)|

Since {χk(x− xi),σk}k
i=1 is an ε0−partition com-

plete ofU , then we have

|gk(x)| > ε0, ∀x∈U, ∀k, ε0 > 0.

It follows from (10) that|E[gk(x)]|> ε0 for all x∈U
and withk large enough. So we get

1
|gk(x)|

6
1
ε0
,

1
|gk(x)|.|E[gk(x)]|

6
1

ε2
0

, ∀x∈U.

(5)

Because{χk(x− xi),σk} is an approximation iden-
tity kernel andf ∈C(U), then one gets

| fk(x)| = |
∫

R

f (u)χk(x−u)dHk(u)|

6 sup
U

| f (u)||
∫

R

χk(x−u)dHk(u)|6 M1.

(6)

In the same manner we can see that

|E[ fk(x)]| 6 M2. (7)

It follows from (5)-(7) that

|Fk(x)− F̂k(x)|6
1
ε0
| fk(x)−E[ fk(x)]|

+
M2

ε2
0

|gk(x)−E[gk(x)]| (∀x∈U).

Therefore

I1 6
1
ε0
‖ fk−E[ fk]‖∞ +

M2

ε2
0

‖gk−E[gk]‖∞. (8)

It is easy to see that

fk(x)−E[ fk(x)] =
∫

R

f (u)χk(x−u)d(Hk(u)−H(u))

=− 1
σk

∫

R

(Hk(u)−H(u))d( f (u)χk(
x−u

σk
)).
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This implies

| fk(x)−E[ fk(x)]| 6
M3

σk
sup
U

|Hk(u)−H(u)|,

whereM3 is the total variation off .χ on U. From
the results of30 we have

P{sup|Hk(u)−H(u)|> σkηk

M0
}6 M4exp(−2kσ2

k η2
k

M2
0

),

where M4 is an absolute constant. By choosing
ηk =

M0
σk
( logk

k )1/2 we have

∞

∑
k=1

P{sup
U

|Hk(x)−H(x)|> (
logk

k
)1/2}<+∞.

By using Borel-Cantelli Lemma31 we receive

sup
U

|Hk(x)−H(x)|6 (
logk

k
)1/2, (a.s.)

with k is large enough. Hence,

‖ fk(◦)−E[ fk(◦)]‖∞ 6
M3

σk
(
logk

k
)1/2 (a.s.). (9)

Using similar arguments we have

‖gk(◦)−E[gk(◦)]‖∞ 6
M5

σk
(
logk

k
)1/2 (a.s.). (10)

Combining (9), (10) with (8) we get

I1 6
[ M3

ε0σk
+

M5.M2

ε2
0σk

]
(
logk

k
)1/2 → 0, k→ ∞ (a.s.).

(11)

According to Lemma 2, since{χk(x−xi),σk} is
an approximation identity kernel then we have

lim
σk→0

‖I( f h,◦,σk)− f (◦)h(◦)‖∞ = 0

and
lim

σk→0
‖I(h,◦,σk)−h(◦)‖∞ = 0.

That follows

lim
σk→0

‖E[ fk(◦)]− f (◦)h(◦)‖∞ = 0, (12)

lim
σk→0

‖E[gk(◦)]−h(◦)‖∞ = 0. (13)

We have

|F̂k(x)− f (x)|=
∣∣E[ fk(x)]
E[gk(x)]

− f (x)
∣∣

6
1

E[gk(x)]

(
|E[ fk(x)]− f (x)h(x)|+

| f (x)||E[gk(x)]−h(x)|
)
, ∀x∈U.

Then by usingf ∈C(U) and (5)-(7) one gets

I2 6
1
ε0

(
‖E[ fk]− f .h‖∞ +M6‖E[gk]−h‖∞

)
. (14)

From (12), (13) and (14) we have

lim
k→∞

I2 = 0 (a.s.). (15)

Combining (4), (11) and (15) we have lim
k→∞

‖Fk(◦)−
f (◦)‖∞ = 0. So that, for everyε > 0, there exists
N0 ∈ N such that

‖Fk(◦)− f (◦)‖∞ < ε

for all k> N0 (a.s.). The theorem is proved.

4. The uniform approximation rates of fuzzy
systems

As we have shown in12, in the n-dimensional
case (inRn), the uniform approximation rates of
fuzzy systems had estimated withf ∈ LB(Rn). How-
ever, this class of functions is a strict subset of the
class of continuous functions but not equal to. So
that there are some parts of the class of continu-
ous functions, although can be approximated by a
fuzzy system, do not have the estimations of the uni-
form approximation rates (section 3). But in one-
dimensional case (inR), we receive results more
better than those of in then−dimensional. Con-
cretely, the uniform approximation rates of the ker-
nel fuzzy systems for continuous functions are esti-
mated as the rates of convergence of the sequence
(logk/k)β .

In this part of the paper, we introduce two ways
to estimate the rates of uniform approximation of the
fuzzy systems for continuous functions. These base
on two following different methods.
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1. The first method is based on technique of the
test function methods (see 1.5.3 in28). In
this way, the singular integrals of functions
are used to approximate. And then a kernel
fuzzy system is constructed to approximate
the singular integrals. Our result based on this
method is given in Theorem 4.

2. The second method is based on theα th abso-
lute moment of the kernel function. For some
hypotheses of the kernel, the rates of uniform
approximation is equivalent to the rates of
uniformly converge of sequence{(lnk/k)β}.
The main result is given in Theorem 5.

At first, we consider the approach of the first
method. Forδ > 0 arbitrary, the modulus continuity
of f ∈C(U) is defined

ω(C(U), f ,δ ) := sup
|h|<δ

‖ f (◦+h)− f (◦)‖∞

and the generalized modulus continuity off ∈C(U)
is defined

ω∗(C(U), f ,δ ) := sup
|h|<δ

‖ f (◦+h)+ f (◦−h)−2 f‖∞.

Definition 3. [see in28] A function f ∈C(U) is said
to satisfy a Lipschitz condition of orderα (α > 0),
in notation f ∈ Lip(C(U),α), if

ω(C(U), f ,δ ) = O(δ α).

A function f ∈C(U) is said to satisfy a generalized
Lipschitz condition of orderα (α > 0), in notation
f ∈ Lip∗(C(U),α), if

ω∗(C(U), f ,δ ) = O(δ α).

Theorem 4.Assume that

1. χ ∈ L1(R),
∫
R

χ(t)dt 6= 0 and χ is an even,
positive function onR,

2. there exists x0 ∈R such that the singular inte-
gral can be represented in following form

I(u2,x0,σk) = x2
0+δ (x0,σk), (16)

where lim
k→∞

δ (x0,σk) = 0.

Then for all f ∈ C(U) there is a fuzzy system
Fk(x), defined in (3), satisfying

‖Fk− f‖∞ 6
C1

ε0σk

( logk
k

)1/2

+
1
ε0

O(ω(C(U), f h,
√

δ (x0,σk)))

+
C2

ε0
O(ω(C(U),h,

√
δ (x0,σk))) (a.s.) (17)

for all k is large enough, where C1,C2 are positive
constants.

Proof. Recall that

‖Fk− f‖∞ 6 ‖Fk− F̂k‖∞ +‖F̂k− f‖∞ = I1+ I2.

From(11) we have

I1 6
C1

ε0σk

( logk
k

)1/2
, (18)

whereC1 is positive number.
In another way, from hypotheses of the theorem

and using Proposition 3.3.1 in28 we have for all
φ ∈C(U)

‖I(φ ,◦,σk)−φ‖∞ = O(ω(C(U),φ ,
√

δ (x0,σk))),

whenk→ ∞. Then whenk→ ∞ we have

‖E[ak(◦)]− f h(◦)‖∞ = ‖I( f h,◦,σk)− f h(◦)‖∞

= O(ω(C(U), f h,
√

δ (x0,σk))) (19)

and

‖E[gk(◦)]−h(◦)‖∞ = ‖I(h,◦,σk)−h(◦)‖∞

= O(ω(C(U),h,
√

δ (x0,σk))). (20)

From(14), (19) and (20) we have

I2 6
1
ε0

O(ω(C(U), f h,
√

δ (x0,σk)))

+
C2

ε0
O(ω(C(U),h,

√
δ (x0,σk))) (21)

whenk→ ∞.
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Combining (18) and (21) we receive the assertion
of the theorem.

In second method, we recall the notation ofα th
absolute moment of a function, it can be stated as
follows.

Definition 4. [see in28] Let α > 0. Theα th absolute
moment ofχ is defined by

m(χ ,α) :=
∫

R

|u|α |χ(u)|du

if the right integral exists.

Theorem 5.Assume thatχ ∈ L1(R),
∫
R

χ(t)dt 6= 0
and χ is an even, positive function. Moreover, we
supposeχ having finiteα th absolute moment (α >
0). Then for each f∈C(U), there exists a fuzzy sys-
tem Fk defined by (3) such that

‖Fk(◦)− f (◦)‖∞ 6
C1

ε0σk

( logk
k

)1/2

+
1
ε0

O(ω∗(C(U), f h,σk))

+
C2

ε0
O(ω∗(C(U),h,σk)) (a.s.) (22)

when k→ ∞, where C1,C2 are positive numbers.

Proof. From the hypotheses of theorem and Propo-
sition 3.4.1 in28 we have for allφ ∈C(U)

‖I(φ ,◦,σk)−φ‖∞ = O(ω∗(C(U),φ ,σk)), k→ ∞.

By using similar arguments to those of Theorem 4
one gets

‖E[ak(◦)]− f h(◦)‖∞ = O(ω∗(C(U), f h,σk)) (23)

and

‖E[gk(◦)]−h(◦)‖∞ = O(ω∗(C(U),h,σk)) (24)

whenk→ ∞. From (23)-(24) and using (14) we have

I2 6
1
ε0

O(ω∗(C(U), f h,σk))+
C2

ε0
O(ω∗(C(U),h,σk)).

(25)

Combining (18) and (25) we receive (22). The
theorem is proved.

If the density function is assumed to be uniform
on U then we receive following corollary.

Corollary 6. Assume that h(x) is an uniformly den-
sity function on U and the conditions of Theorem 5
hold. Then for any f(◦) ∈ C(U), there is a fuzzy
system Fk(x) defined by (3) such that

‖Fk(◦)− f (◦)‖∞ 6
C3

ε0σk

( logk
k

)1/2

+
1
ε0

O(ω∗(C(U), f ,σk)) (a.s.)

when k→ ∞, where C3 is positive number.

Proof. The uniformly density functionh(x) on U
has the form

h(x) =

{
1

2−2δ0
if x∈U

0 if x /∈U.

Then
O(ω∗(C(U),h,σk)) = 0,

O(ω∗(C(U), f h,σk))=
1

2−2δ0
O(ω∗(C(U), f ,σk)).

It follows from Theorem 5 that the assertion of
corollary holds.

In the class of functions satisfying generalized
Lipschitz condition of orderα , α > 0, we receive
better results on the estimation of the rates of ap-
proximation.

Corollary 7. Assume that h(x) is an uniformly den-
sity function on U and the conditions of Theorem 5
hold. Moreover, suppose thatχ has finiteα th ab-
solute moment (0 < α 6 2). Then for all f ∈
Lip∗(C(U),α), there exists a fuzzy system Fk defined
by (3) such that

‖Fk(◦)− f (◦)‖∞ 6
C1

ε0σk

( logk
k

)1/2

+
1
ε0

O(σ α
k ) (a.s.) (26)

when k→ ∞.
Furthermore, whenσk ≈ (logk/k)1/2(1+α) then

we receive the following estimation

‖Fk− f‖∞ 6 O((logk/k)α/2(1+α)) (a.s.). (27)
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Proof. Sinceh(x) is uniformly density function on
U and h ∈ Lip∗(C(U),α) then by Corollary 6 we
receive easily the estimation (26).

For σk ≈ (logk/k)1/2(1+α) in (26) we receive
(27). The corollary is proved completely.

The rates of uniform approximation are usually
measured in terms of the order of error‖F(◦)−
f (◦)‖∞. The determination of the optimal approx-
imation rates is called the saturation problem. We
remark that classical approximation processes (poly-
nomial, spline, trigonometric ) are saturated with or-
der O(logk/k)α (when f ∈ C[R]), wherek is the
number of basis functions (see32,33). From34,6 we
can see that fuzzy systems (3) can be viewed as in-
terpolation functions of input-output data. These in-
terpolation functions are also combinations ofk ba-

sis functions

{
χk(x−xi )

∑k
j=1 χk(x−xj )

}k

i=1
. From above results

we can see that the approximation rates of fuzzy sys-
tems are also saturated with orderO(logk/k)α .

5. Numerical example

Example 1.In this example, we introduce some es-
sential functions such as: Triangular set function,
Gaussian set function, Parabol set function, Laplace
set function and Spline set function. These functions
are used to construct approximation identity kernels
and to be input membership functions of fuzzy sys-
tems. Here are some of them:

1. Triangular set function

χT(x) =





x+1, −16 x< 0,

−x+1, 06 x6 1,

0, |x|> 1.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Triangular function

Fig. 1. Triangular set function.

We haveI(u2,x,σk) =
∫+∞
−∞ u2 1

σk
χT(

x−u
σk

)du. By
settingt = x−u

σk
, we have

I(u2,x,σk) =

∫ +∞

−∞
(x− tσk)

2χT(t)dt

=

∫ 0

−1
(x− tσk)

2(1+ t)dt+
∫ 1

0
(x− tσk)

2(1− t)dt

= x2+
σ2

6
.

In other wordsm(χT ,α) =
∫+∞
−∞ |u|α |χT(u)|du =

2
∫ +∞

0 uα χT(u)du. Settingt = u
σk
, we get

m(χT ,α) = 2σ α
k

∫ +∞

0
tα χT(t)dt

= 2σ α
k

∫ 1

0
tα(1− t)dt =

2σ α
k

α2+3α +2
.

2. Gauss set function

χG(x) = e−
1
2x2

.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3
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0.5
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0.7

0.8

0.9

1
Gauss function

Fig. 2. Gauss set function.
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By the same arguments we have

I(u2,x,σk) = x2+σ2
k .

m(χG,α) = 2
α−1

2 Γ(
α +1

2
)σ α

k .

whereΓ(x) =
∫ +∞

0 tx−1e−tdt is Gamma integral.
3. Parabol set function

χP(x) =

{
3
4(1−x2), −16 x6 1,

0, |x|> 1.

−3 −2 −1 0 1 2 3
0

0.1
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0.4

0.5

0.6

0.7

0.8

0.9

1
Parabolic function

Fig. 3. Parabol set function.

I(u2,x,σk) = x2+σ2
k /5.

m(χP,α) =
4σ α

k (1+(−1)α)

(α +1)(α +3)
.

4. Laplace set function

µL(x) =
1
2

e−|x|.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Laplace function

Fig. 4. Laplace set function.

I(u2,x,σk) = x2+2σ2
k .

m(χL,α) = 2σ α
k Γ(α +1).

5. Spline set function

χS(x) =





0, x6 −3
2 ,

8
9(x+

3
2)

2, −3
2 < x6 −3

4 ,

1− 8
9x2, −3

4 < x6 3
4,

8
9(x− 3

2)
2, 3

4 < x6 3
2,

0, x> −3
2 .

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Spline function

Fig. 5. Spline set function.

I(u2,x,σk) = x2+9σ2
k /32.

m(χS,α) =
31+α(22+α −1)σ α

k

4α(α3+6α2+11α +6)
.

6. Trapezoidal set functions

χH(x) =





2x+2, −16 x6 −1
2 ,

1, −1
2 < x6 1

2,

−2x+2, 1
2 < x6 1,

0, |x|> 1.
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Trapezoidal function

Fig. 6. Trapezoidal set function.

I(u2,x,σk) = 5σ2
k /24+x2.

m(χS,α) =
(4−2−α)σ α

k

α2+3α +2
.

It is easy to see that these functions is valued on
[0,1]. So that they all are input membership func-
tions of fuzzy systems. Moreover, by using a trans-
lation and scale transformation, we can construct
approximation identity kernels based on these func-
tions, corresponding.

From I(u2,x,σk) and m(χ ,α), we can see that
they all satisfy hypotheses of Theorem 4 and Theo-
rem 5. The integralI(u2,x,σk) is alway represented
in form x2+δ (x0,σk), whereδ (x0,σk) depends only
on σ2

k . So that we can construct a fuzzy system,
based on the kernel constructed on those functions,
such that it can approximate a continuous function
on U with the rates of approximation is estimated
on Theorem 4 or Theorem 5.

On the other hand, all those functions have fi-
nite α th absolute moments and these are repre-
sented byσ α

k . Hence, if f satisfies generalized Lip-
schitz condition of orderα and if we chooseσk ≈
(logk/k)1/2(1+α), then from Corollary 7 we can see
that the rates of approximation of fuzzy systems is
O((logk/k)α/2(1+α)) for all 0< α 6 2.

Example 2. Consider 6 following functions

1. f 1(x) =

{
xsin 1

x , x 6= 0,

0, x= 0.

2. f 2(x) = 10(e−
|x|
0.2 +e−

|x−0.8|
0.3 +e−

|x+0.6|
0.1 ).

3. f 3(x) = 8sin(10x2+5x+1).

4. f 4(x) = 5arctan

(
2000g1(x)g2(x)

x2+1.5x+1

)
where

g1(x) = (x−0.1)(x−0.3)(x−0.5)(x−0.9)(x−1.1)

g2(x) = (x+0.2)(x+0.4)(x+0.6)(x+0.8)(x+1)

5. f 5(x) = x
2000

6. f 6(x) = 10[sin(4x+0.1)+ sin(14x)+ sin(11x−
0.2)+sin(17x+0.3)];

With following training data

{(xi =−0.9+
i

1000
,yi = f 2(xi))}1800

0 ,

we approximate functionsf 1, f 2, f 3, f 4, f 5 and
F6 by fuzzy systems constructed directly as (3)
by using approximation identity kernels from
χT ,χG,χP,χL,χS andχH in Example 1, respectively.
The results are listed below

Fig. The curve of target function and fuzzy systemMaximum error

7 Function f 1 and triangular fuzzy system 5.641030677038259e-002

8 Function f 2 and Gauss fuzzy system 1.144553440354985e-001

9 Function f 3 and Parabolic fuzzy system 8.442668133852935e-001

10 Function f 4 and Laplace fuzzy system 2.540585179966536e+000

11 Function f 5 and Spline fuzzy system 1.626303258728257e-019

12 Function f 6 and Trapezoidal fuzzy system 3.157647797971208e-002
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Fig. 7. The curve of the target function, Triangular FS.
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Target function f2(x)
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Fig. 8. The curve of the target function, Gauss FS.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

Target function f3(x)
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Fig. 9. The curve of the target function, Parabolic FS.
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Target function f4(x)
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Fig. 10. The curve of the target function, Laplace FS.
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Fig. 11. The curve of the target function, Spline FS.
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Fig. 12. The curve of the target function, Trapezoidal FS.
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Example 3.
Consider χ(x) = 1

2
√

π e−x2/4 and regularizing

scale factors{σk =
1√
k
,k∈ N}. It is easy to see that

χ(x) is an even, positive function andχ ∈ L1(R),∫
R

χ(x)dx 6= 0. In another way, we get

I(u2,x,σk) =
1√

4πσk

∞∫

−∞

u2e
−
(

x−u
2σk

)2

du.

Settingt = x−u
2σk

with note that

∫ +∞

−∞
e−t2

dt =
√

π,
∫ +∞

−∞
te−t2

dt = 0

and ∫ +∞

−∞
t2e−t2

dt =

√
π

2
,

we have
I(u2,x,σk) = x2+2σ2

k .

That shows the hypotheses of Theorem 4 are satis-
fied with δ (x0,σk) = 2σ2

k . Then the fuzzy system
can be stated as follows

Fk(x) =
k

∑
i=1

[ 1√
4πσ2

k
e−(x−xi )

2/4σ2
k

∑k
j=1

1√
4πσ2

k
e−(x−xj )2/4σ2

k

]
yi , (28)

whereyi = f (xi) and satisfies the estimation (17).
Moreover, if we assume thatf ,h satisfy a Lipschitz
condition of orderα , (0< α 6 2) then we receive

‖Fk(◦)− f (◦)‖∞ 6
C1

ε0σk

( logk
k

)1/2
+O(σ α/2

k ) (a.s.)

whenk is large enough, whereFk is a fuzzy system
defined by (28).

In this example we use fuzzy systems (28) in or-
der to show the simultaneously approximation capa-
bility of this fuzzy systems for not only target func-
tion but also its derivative (see Theorem 5.1 in12).
We consider following target function

f (x) =−20

(
x

x2+1

)2

cos(10x2+20x−191)

and its first order derivative

f ′(x)=
40x(x+1)(10xsinu(x2+1)+cosu(x−1))

(x2+1)3 ,

whereu= 10x2+20x−191.
Let δ0 = 0.1 and the input spaceU = [−0.9,0.9].

We uniformly sampled 18001 point of the target
function f on U to give the training data{(xi =
−0.9+ i

10000,yi = f (xi))}18000
i=0 .

From Figure 13 we can see that the curve of target functionf (x) (the solid line(−)) and the curve of fuzzy
systemF(x) (the circle line(◦)) are practically overlapped.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−1

0
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4

5
Target function
Fuzzy system
Error function
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Fig. 13. The curve of target functionf (x) and fuzzy system
F(x).

From Figure 14 we can see that, the derivative functionf ′ varies very fast whenx∈U but the curve off ′(x)
(the solid line(−)) and the curve ofF ′(x) (the circle line(◦)) are still practically overlapped.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−150

−100

−50

0

50

100

150

200
Derivative of target function
Derivative of fuzzy system
Error function

Fig. 14. The curve off ′ andF ′(x).

Example 4. In this example we will make some
comparisons about the capability approximation of
kernel fuzzy systems with the capability approxima-
tion of Hermite interpolation polynomial for contin-
uous functions.

Let {(xi = −1+ 2i
k ,yi = f (xi))}k

i=0 be a training
data of functionf onU and

χ(x) :=





0 if x<−2
k ,

2(kx+2
2 )2 if − 2

k 6 x6− 2
2k,

1−2( k
2x)2 if − 2

2k 6 x6 2
2k ,

2(kx−2
2 )2 if 2

2k 6 x6 2
k ,

0 if x> 2
k .

(29)

be a central Spline kernel.

By setting

χ j(x) = χ(x+1− j
2
k
), j = 0,1, ...,k

we have{χ j(x)} j=0,1,...,k is an approximation iden-
tity kernel onR.

From the properties of Spline functions (see in
11) we can see that

k

∑
j=0

χ j(x) = 1, for all x∈ [−1,1]. (30)

So fuzzy systems (3) can be rewritten in reduced
form as follows

Fk(x) =
k

∑
i=1

χ j(x).yi , (31)

Consider the target function

f (x) =
100(x+0.95)(x+0.6)(x+0.4)(x−0.1)(x−0.4)(x−0.8)(x−0.9)

(x+1.7)(x−2)2 ;
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With 100 knots, Figure 15 shows the curve of target function, fuzzy system and Hermite interpolation poly-
nomial.
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Fig. 15. The curve of target function, Hermite interpolation
polynomial and fuzzy systems

Set

Error := ‖ f −F‖2 =

√√√√
k

∑
j=1

(y j −F(x j))2,

where Error is the error of approximation methods,
F is the fuzzy system or the interpolation polyno-
mial Hermite. Then the error of fuzzy systems is

ErrorFuzzy= 1.407491319767667e−016

and the error of Hermite interpolation is

ErrorHermite= 4.278987665021929e−017.

From above results we can see that with the spe-
cial choice of kernel shapes, the error of fuzzy sys-
tems are the same order as the error of Hermite inter-
polation polynomial. While Hermite interpolation
requires the target functions must be continuously
differentiable, fuzzy systems can be constructed di-
rectly from learning data of functions.

6. Conclusion

By using Fourier technique, we have proved the
capability of approximation of fuzzy systems for
continuous one-variables functions. Moreover, the
rates of uniform approximation is estimated as the
rates of convergence of the sequence(logk/k)α .
Some approaches to deal with this problem are
given. One base on the technique of the test func-
tion methods, another is based on theα th absolute
moment of the kernel function. The estimations of
the rates of uniform approximation depend on our
kernel function satisfying what conditions in Theo-
rem 4 or Theorem 5. Further results for continuous
multi-variables functions will be given in our future
works.
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