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Abstract

Recently, many feature extraction methods, which are based on the matrix representation of image and
matrix bidirectional projection technique, are proposed. However, these methods in solving the two pro-
jection matrices will suffer from non-optimized or non-convergent solution. To overcome this problem, a
novel feature extraction method which exploits the Maximum Margin Criterion is proposed, where an it-
erative optimization algorithm is designed to compute the two projection matrices. A noteworthy property
of the proposed iterative solution algorithm is that it can monotonously increase the optimization objec-
tive, i.e., the bidirectional projection margin. According to this property, we further theoretically prove
that the objective value and the solution are convergent. Moreover, the proposed method can automatically
determine suitable feature dimensionality to obtain competitive recognition performance. Extensive and
systematic experiments on CMU PIE and Yale face databases demonstrate the high convergence speed of
the proposed iterative optimization procedure, as well as the superiority of the proposed feature extraction
method over other state-of-the-art approaches in face recognition.
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1. Introduction

Feature extraction plays the central role in ma-
chine learning and pattern recognition. Many Di-
mensionality Reduction based feature extraction
methods have been developed over the past few
decades. Among these methods, Eigenfaces1 and
Fisherfaces2, whose underlying ideas are Princi-
pal Component Analysis(PCA) and Linear Discrim-
inant Analysis(LDA), respectively, are two of the
most popular ones.

Since unsupervised learning cannot properly ex-
tract the most discriminative feature, in most ap-
plications, LDA is proved to be much more effec-
tive than PCA. However, it cannot be applied di-
rectly to small sample size problem(SSS)3, because
the within-class scatter matrix is singular. Many
approaches have been proposed to solve SSS prob-
lem of LDA, such as PCA+LDA2, Regularized Dis-
criminant Analysis(RDA)4, LDA+PCA5, Penalized
Discriminant Analysis(PDA)6,7. Maximum Mar-
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gin Criterion(MMC)8, which uses the difference of
between-class scatter and within-class scatter as dis-
criminant criterion, is another simple, efficient and
stable method that can alleviate the SSS problem in
LDA. Geometrically, MMC maximizes the average
margin between classes.

Recent studies have shown that face images pos-
sibly reside on a nonlinear submanifold9,10,11,12,13.
Some nonlinear techniques have been proposed to
discover the nonlinear structure of the manifold,
e.g., Isomap12, Locally Linear Embedding(LLE)11,
Laplacian Eigenmap9, and Local Tangent Space
Alignment(LTSA)14. Since these manifold learning
algorithms have no explicit mechanism to deal with
unseen samples, it is not applicable in the real face
recognition problem. Many linearized method based
on these algorithms have been proposed including
Neighborhood Preserving Embedding(NPE)15, Lin-
ear Local Tangent Space Alignment(LLTSA)16. He
et al. proposed the Locality Preserving Projection
(LPP)17, which is a linear dimensionality reduction
method derived from Laplacian Eigenmap. And
Laplacianfaces10 which applies LPP for face feature
extraction attempts to preserve the local geometric
structure of the face image set. However, it is an
unsupervised method in nature as Eigenfaces.

The above mentioned methods need to convert
the image matrix into a vector. This will aggra-
vate the “the curse of dimensionality”, increase
the computation complexity, and lose some useful
structural information of images. Thereby, based
on direct matrix representation of face image, 2-
dimensional PCA18, 2-dimensional LDA19 and 2D
Laplacianfaces20 are proposed . A shortcoming of
these 2D methods is that the extracted features still
have related much high dimensionality for classifi-
cation. Zuo et al. proposed bidirectional PCA21

which exploits both image matrix column projec-
tion and row projection to further reduce the dimen-
sionality of extracted features. However, the column
projection matrix and row projection matrix, which
in fact depend on each other, are computed in a sepa-
rate way. This will result in non-optimized solution.

This problem also exists in the Laplacian Bidi-
rectional Maximum Margin Criterion(LBMMC)
method recently proposed by Yang et. al22. In LB-

MMC, the maximum margin criterion is adopted.
And to explicitly exploit the geometry structure(i.e.
manifold) of data, the Laplacian scatter matrix is de-
fined by incorporating the Laplacian similarity as
weight into the standard scatter matrix. LBMMC
aims to obtain the optimal projection matrices via
maximizing the projection margin, which depends
on the projection matrices in both directions. For the
simplicity of solution, however, LBMMC only con-
siders projection in one direction when maximizing
the projection margin and optimizes the two projec-
tion matrices in a separate way.

An improved method is Tensor Subspace
Analysis(TSA)23, in which the Fisher Discriminant
Criterion is used and the projection matrices are
jointly optimized in an iterative procedure. A prob-
lem of TSA is that the convergence of the iterative
solution is not guaranteed.

To overcome the aforementioned problems in
existing feature extraction methods based on ma-
trix(tensor) bidirectional projection, in this paper,
we redefined the Laplacian bidirectional projection
margin in LBMMC respecting influence of projec-
tions in both directions. And an iterative optimiza-
tion algorithm to maximize the defined projection
margin is proposed, followed by a detailed con-
vergency proof of the solution projection matrices
and the projection margin. Moreover, the proposed
method can automatically select suitable feature di-
mensionality for face recognition.

It is worthwhile to highlight several aspects of
the proposed approach here:

1. Although the solution is obtained in an iter-
ative manner, the iterative procedure is con-
vergent, and experiments demonstrate that the
solution will convergence after a few number
of iterations.

2. The computation of our method is very sim-
ple. Based on the matrix representation of
image in each iteration, we only need to con-
duct eigenvalue decomposition of matrix with
small size, which is far smaller than that in
vector-based methods. Moreover, the matrix
representation of image can preserve struc-
tural information which is ignored by the
vector-based methods.
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3. In our method, the manifold structure of the
image space, which is modeled by an adja-
cency graph, is explicitly taken into account.

4. Our method can automatically select suit-
able feature dimensionality with which algo-
rithm can obtain comparable recognition per-
formance. This is very important in prac-
tice. The previous methods need to consider
all the possible dimensionality to obtain the
top recognition performance. This is very
time-consuming and inapplicable in real face
recognition system.

2. Laplacian scatter matrix

Let matrix x represent an image withm× n pixels,
then feature matrixy of imagex can be obtained by:

y=UTxV (1)

whereU andV arem×m′(m′ 6 m) column projec-
tion matrix andn×n′(n′ 6 n) row projection matrix,
respectively.

Suppose we are givenN training im-
ages X = [x1,x2, . . . ,xN] = [X1, . . . ,Xi, . . . ,Xc] =

[x(1)1 , . . . ,x(i)j , . . . ,x(c)Nc
] which belong toc different

classes, theith class hasNi images(∑c
i=1 Ni = N)

and matrixXi = [x(i)1 ,x(i)2 , . . . ,x(i)Ni
] consists of the im-

age matrices from theith class. By representing
each image matrix as anm-set of row vectors, the
row total scatter matrix can be expressed as:

Srow
t =

1
N

N

∑
i=1

m

∑
j=1

(xi j −x( j))T(xi j −x( j)) (2)

=
1
N

N

∑
i=1

(xi −x)T(xi −x) (3)

=
1

2N2

N

∑
i=1

N

∑
j=1

(xi −x j)
T(xi −x j) (4)

wherex, xi j andx( j) are the mean matrix of all train-
ing images,jth row vector ofith image matrix and
mean vector ofjth row vector of all training images,
respectively.

The row within-class scatter matrix can be de-
fined as:

Srow
w =

1
N

c

∑
i=1

Ni

∑
j=1

(x(i)j −mi)
T(x(i)j −mi) (5)

=
1
N

c

∑
i=1

1
2Ni

Ni

∑
j,k=1

(x(i)j −x(i)k )T(x(i)j −x(i)k ) (6)

wherex(i)j andmi are thejth image matrix ofith class
and mean matrix ofith class, respectively.

The use of manifold information in feature ex-
traction has shown the state-of-the-art face recog-
nition performance10,23,24. According to graph em-
bedding theory25, we define an undirected weighted
graph G(X,W) to characterize the nonlinear mani-
fold structure of the image setX. The real symmet-
ric matrix W measures similarities of any pairs of
samples. It can be constructed using various simi-
larity criterion, such as Gaussian similarity in Lapla-
cian eigenmap9, local neighborhood relationship as
in LLE11 and also prior class information in super-
vised learning algorithms. Here, the Gaussian simi-
larity is adopted:

wi j = exp(−‖xi −x j‖2/(2σ2)) (7)

Then in order to incorporate the nonlinear mani-
fold structure of face images, we can define the fol-
lowing row total Laplacian scatter:

LSrow
t =

1
2N2

N

∑
i, j=1

wi j (xi −x j)
T(xi −x j) (8)

=
1

N2

N

∑
i, j=1

(wi j x
T
i xi −wi j x

T
i x j) (9)

=
1

N2X′T(L⊗ Im)X
′ (10)

whereX′ = [xT
1 ,x

T
2 , . . . ,x

T
N]

T , D is a diagonal matrix
with dii = ∑N

j=1wi j , L = D−W is the Laplacian ma-
trix of graphG, Im is identity matrix of orderm and
operator⊗ is the Kronecker product of matrices.

Similarly, in row direction, the image within-

Published by Atlantis Press 
      Copyright: the authors 
                   865



Y. Zhan, J. Yin

class Laplacian scatter matrix is:

LSrow
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j,k=1

w(i)
jk (x

(i)
j −x(i)k )T(x(i)j −x(i)k )

=
1
N

c

∑
i=1

1
Ni

X′T
i (L(i)

w ⊗ Im)X
′
i (11)

=
1
N

X′T(Lw⊗ Im)X
′ (12)

where w(i)
jk = exp(−‖x(i)j −x(i)k ‖2/(2σ2))(1 6 i 6

c,1 6 j,k 6 Ni), X′
i = [x(i)T1 ,x(i)T2 , . . . ,x(i)TNi

]T , L(i)
w

is the Laplacian matrix ofith class andLw =

diag(L(1)
w /N1, . . . ,L

(c)
w /Nc) is a block diagonal ma-

trix.
Thus, in row direction, the image between-class

Laplacian scatter matrixLSrow
b is:

LSrow
b = LSrow

t −LSrow
w (13)

Similarly, each image matrix can also be re-
garded as ann-set of column vectors. Then the cor-
responding scatter matrices in column can be de-
fined as:

Scol
t =

1
2N2

N

∑
i=1

N

∑
j=1

(xi −x j)(xi −x j)
T (14)

Scol
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j,k=1

(x(i)j −x(i)k )(x(i)j −x(i)k )T

(15)

LScol
t =

1
N2X(L⊗ In)X

T (16)

LScol
w =

1
N

X(Lw⊗ In)X
T (17)

LScol
b = LScol

t −LScol
w (18)

3. Solution of TSA and LBMMC

Both TSA23 and LBMMC22 exploit the Eq.(1) to im-
plement feature extraction. The difference between
them is that LBMMC adopts Maximum Margin Cri-
terion to solve the projection matricesU andV while
TSA employs the Fisher Discriminant Criterion to
iteratively compute the projection matrices.

After performing feature extraction, the real
Laplacian scatter matrices in feature space are:

LSrow
t =

1
2N2

N

∑
i, j=1

wi jV
T(xi − x j)

TUUT(xi − x j)V (19)

=
1

N2VTX′T(e⊗U)(L⊗ Im′)(e⊗U)TX′V (20)

LSrow
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j ,k=1

w(i)
jkVT(x(i)j − x(i)k )TUUT(x(i)j − x(i)k )V

=
1
N

VTX′T(e⊗U)(Lw⊗ Im′)(e⊗U)TX′V (21)

LScol
t =

1
2N2

N

∑
i, j=1

wi jU
T(xi − x j)VVT(xi − x j)

TU

=
1

N2UTX(e⊗V)(L⊗ In′)(e⊗V)TXTU (22)

LScol
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j ,k=1

w(i)
jkUT(x(i)j − x(i)k )VVT(x(i)j − x(i)k )TU

=
1
N

UTX(e⊗V)(Lw⊗ In′)(e⊗V)TXTU (23)

wheree is a column vector of all 1’s with suitable
dimensionality.

From the above, one can see that each scatter ma-
trix in feature space depends on both projection ma-
trix U andV. However, for simplicity of solution,
LBMMC computes Laplacian scatter matrices in a
simplified way: it ignores the influence of column
projectionU when computing row scatter matrices
and ignores the influence of row projectionV when
computing column scatter matrices.

L̂S
row
t =

1
2N2

N

∑
i, j=1

wi jV
T(xi − x j)

T(xi − x j)V (24)

L̂S
row
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j ,k=1

w(i)
jkVT(x(i)j − x(i)k )T(x(i)j − x(i)k )V

(25)

L̂S
col
t =

1
2N2

N

∑
i, j=1

wi jU
T(xi − x j)(xi − x j)

TU (26)

L̂S
col
w =

1
N

c

∑
i=1

1
2Ni

Ni

∑
j ,k=1

w(i)
jkUT(x(i)j − x(i)k )(x(i)j − x(i)k )TU (27)
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By this simplification, LBMMC can easily solve
projection matricesU andV in a separate way via
maximizing the projection margin in two directions
respectively:

max
V

: tr(L̂S
row
b − L̂S

row
w ) = tr(L̂S

row
t −2L̂S

row
w )

max
U

: tr(L̂S
col
b − L̂S

col
w ) = tr(L̂S

col
t −2L̂S

col
w )

Although the projection matricesU andV can be
easily computed in LBMMC, they are not optimal in
terms of face recognition performance because they
do not maximize the real projection margin in fea-
ture space.

Since TSA adopts the Fisher Discriminant Crite-
rion instead of Maximum Margin Criterion, it com-
putes the optimalU andV via solving the following
minimization problem:

min
U,V

tr(LSrow
w )

tr(LSrow
t )

=
tr(LScol

w )

tr(LScol
t )

(28)

The equivalence holds because tr(LSrow
w ) =

tr(LScol
w ) and tr(LSrow

t ) = tr(LScol
t ). The optimalU

andV are computed in a iteratively procedure, alter-
nating between the computation ofU for a givenV
and the computationV for a givenU . As mentioned
in section 1, the problem of TSA is that there is no
theoretical guarantee that the iterative procedure will
be convergent.

4. Our solution

The proposed method inherits the maximum margin
criterion from LBMMC and iterative optimization
idea from TSA and combines them together. This
results in a convergent solution, details of which will
be given below.

4.1. the proposed optimization objective

According to the definition of Laplacian scatter in
previous section, the Laplacian projection margin in

each direction can be defined as:

Jrow(U,V) = tr(LSrow
t −2LSrow

w ) = tr(VTJUV)
(29)

Jcol(U,V) = tr(LScol
t −2LScol

w ) = tr(UTJVU) (30)

where:

JU =
1

N2X′T(e⊗U)(L⊗ Im′)(e⊗U)TX′

− 2
N

X′T(e⊗U)(Lw⊗ Im′)(e⊗U)TX′ (31)

only depends onU , and

JV =
1

N2X(e⊗V)(L⊗ In′)(e⊗V)TXT

− 2
N

X(e⊗V)(Lw⊗ In′)(e⊗V)TXT (32)

only depends onV.
Large Jrow(U,V) and Jcol(U,V) means that in

feature space samples are far from each other if they
are from different classes, but are close to each other
if they are from the same class. Moreover, since the
Laplacian similarity which can capture the underly-
ing manifold structure of image set is introduced to
the scatter matrix, the local geometric structure of
image set can be well preserved in the feature space.
Thus our optimization objective will be:

max : J(U,V) = Jrow(U,V)+Jcol(U,V)

s.t. UTU = Im′ , VTV = In′
(33)

4.2. The solution and its convergency

It is difficult to obtain the optimalU andV simulta-
neously since they depend on each other. From the
Eqs. (20)(21)(22)(23), it is easy to check that

Jrow(U,V) = Jcol(U,V) (34)

This identity plays an important role in solving the
optimization problem (33). By this identity, the ob-
jective function in (33) can be expressed as:

J(U,V) = 2Jrow(U,V) = 2Jcol(U,V) (35)

Eq.(35) means that we can maximizeJ(U,V)
by maximizingJrow(U,V) or Jcol(U,V) separately.
This motivates us to iteratively solve the optimiza-
tion problem (33). FixingU , we refineV by maxi-
mizing Jrow(U,V), and for fixedV, we obtainU by
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maximizing Jcol(U,V). The details of the iterative
procedure to solveU andV are listed in Fig.1.

Algorithm 1. Procedure to iteratively solveU andV

1: Initialization. set initialU0 as arbitrary column orthogonal
matrix.

2: Iterative optimization.
Fork= 1,2, . . . ,kmax, do

1. ComputeJUk−1 according to (31)

2. Solve the eigenvalue decomposition problem:

JUk−1vi = λivi , i = 1,2, . . . ,n′ (36)

wherevi is the eigenvector corresponding to theith
largest eigenvalueλi

3. SetV = [v1,v2, . . . ,vn′ ].

4. ReshapeV for orthogonal transformation invari-
ance, letS=VVTX′TX′VVT , solve eigenvalue de-
composition:

Svi = γivi (37)

and letVk = [v1,v2, . . . ,vn′ ], wherevi is eigenvector
corresponding to theith largest eigenvalue.

5. ComputeJVk according to (32)

6. Solve the eigenvalue decomposition problem:

JVku j = λ ′
ju j , j = 1,2, . . . ,m′ (38)

whereu j is the eigenvector corresponding to the
j th largest eigenvalueλ ′

j .

7. SetU = [u1,u2, . . . ,um′ ].

8. ReshapeU for orthogonal transformation invari-
ance, letT =UUTXXTUUT , solve eigenvalue de-
composition:

Tui = γiui (39)

and letUk = [u1, . . . ,um′ ], whereui is eigenvector
corresponding to theith largest eigenvalue.

if ‖Uk−Uk−1‖ <
√

m′ε and‖Vk−Vk−1‖<
√

n′ε (we set
ε = 0.01 in our experiments), then return.

3: Output the projection matrices U =Uk, V =Vk.

Figure 1: Algorithm 1: iterative solution with man-
ually specified dimensionality

A notable property of the proposed iterative pro-
cedure is that it can monotonously increase the
objective function value as proved in Theorem 1,
which directly guarantees its superiority over LB-
MMC and TSA.

Theorem 1. The objective function satisfies the fol-
lowing inequality:

J(Uk,Vk)6 J(Uk,Vk+1)6 J(Uk+1,Vk+1) (40)

Proof. According to algorithm 1,Uk andVk sat-

isfy:

tr(VT
k JUk−1Vk) = max

VTV=In′
tr(VTJUk−1V) (41)

tr(UT
k JVkUk) = max

UTU=Im′
tr(UTJVkU) (42)

Then by using (34), we have:

Jcol(Uk,Vk) = Jrow(Uk,Vk) (43)

6 Jrow(Uk,Vk+1) = Jcol(Uk,Vk+1) (44)

6 Jcol(Uk+1,Vk+1) (45)

Thus according to (35), the objective function satis-
fies:

J(Uk,Vk)6 J(Uk,Vk+1)6 J(Uk+1,Vk+1) (46)

Theorem 1 means that the objective function
monotonously increases with regard to the iteration
numberk. Another fact is that the objective func-
tion has upper bound under the constraints in (33).
Therefore objective function will converge in lim-
ited iterations. Then we can further obtain the fol-
lowing Theorem which gives the convergency of the
solution of algorithm 1:

Theorem 2. The projection matrices sequence
{(Uk,Vk)} obtained by algorithm 1 will converge.
Proof. According to Theorem 1, we can assume

that there areK iterations when the objective func-
tion converges, then we have:

J(UK ,VK) = J(UK ,VK+1) = J(UK+1,VK+1) (47)

Substituting (35) into (47) and by using (29) and
(30), we can obtain that:

tr(VT
K JUKVK) = tr(VT

K+1JUKVK+1) (48)

Then∃ orthogonal matricesQ such that:

VK+1 =VKQ. (49)
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Thus,VK+1 andVK has the same column space. And
in step 4 of algorithm 1, we have reshapedVK and
VK+1 to be the leading eigenvectors of samples pro-
jected to this column space, therefore we have:

VK+1 =VK . (50)

Similarly, we can obtainUK+1 = UK . This means
that when objective function converges, the projec-
tion matrices sequence also converges.

When iteration in algorithm 1 stops, we have the
following conclusion:

J(U,V) = 2
n′

∑
i=1

λi = 2
m′

∑
j=1

λ ′
j (51)

It is a straightforward inference of Eqs.(35),(36) and
(38).

4.3. Selecting suitable feature dimensionality

Selecting a suitable feature dimensionality is a key
issue for dimensionality reduction based feature ex-
traction. In the previous section, we manually spec-
ify the feature dimensionality for the proposed ap-
proach beforehand. In fact, our method is capable
of automatic selection of suitable dimensionality to
obtain comparable performance.

As MMC, the Laplacian projection margin cap-
tures the average gap between different classes. Ac-
cording to (36) and (38), after thekth iteration, we
have:

J(Uk−1,Vk) = 2
n′

∑
i=1

λi ; (52)

J(Uk,Vk) = 2
m′

∑
i=1

λ ′
i (53)

Therefore, eigenvectors with positive eigenvalues
will enlarge this gap, then further make samples
from different classes well separated(on average) in
feature space. In contrast, samples from different
classes will overlap in the directions of eigenvectors
with negative eigenvalues. So we should choose the
eigenvectors with positive eigenvalues to constitute
the projection matricesU andV. Another considera-
tion is that feature extraction is not only to reduce the

dimensionality but also to preserve as much infor-
mation as possible such as local geometric structure,
so we also pick up some eigenvectors with eigenval-
ues slightly less than 0.

Then we can describe our method with automatic
selection feature dimensionality in Fig.2:

Algorithm 2

1: Set initialU = Im andV = In;

2: Iteratively solve (36) and (38) until the objective func-
tion converges, in each iteration, choose eigenvectors
with eigenvalues more thanε(we setε =−0.01 in our
experiments) to constitute the projection matricesUk
andVk.

3: Output the projection matricesU =Uk andV =Vk.

Figure 2: Algorithm 2 with automatical selection
suitable feature dimensionality

5. Experimental results

In this section, we first experimentally investigate
the convergency of the proposed iterative solu-
tion procedure, then we evaluate the performance
of the proposed method on two benchmark face
databases CMU PIE face database(pose, illumina-
tion and expression)26 and Yale face database27,
which are widely used in face recognition commu-
nity. Since Ref.23 and Ref.22 have compared TSA
and LBMMC with Eigenfaces, Fisherfaces, Lapla-
cianfaces and other state-of-the-art approaches, re-
spectively, and it is reported that TSA and LBMMC
outperform those methods in most cases. Here we
only compare our method with MMC, TSA and LB-
MMC.

For face recognition we first use these methods to
learn the projection matrices(vectors) from the train-
ing face images, then for any new image to be identi-
fied we compute its new feature by using the learned
projection matrices(vectors), finally the nearest clas-
sifier with cosine distance is employed for classifica-
tion in the new feature space. And in TSA, LBMMC
and our method we setσ as the half of the mean dis-
tance between any pair of samples, and the number
of iterations in TSA is taken to be 10.
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5.1. Data sets

We downloaded the two face data sets from He’s
homepage‡. All the images have been aligned ac-
cording to the positions of eyes, and each images
have been cropped to a size of 32×32, with 256 gray
levels per pixel. For MMC method, the image is
represented as an 1024-dimensional vector, while in
TSA, LBMMC and our method, the image is repre-
sented as a (32×32)-dimensional matrix.
CMU PIE face database: The whole PIE face
database from CMU contains 41,368 images of 68
people, each person under 13 different poses, 43
different illumination conditions, and with 4 dif-
ferent expressions. The subset used in our ex-
periments contains images from five near frontal
poses(C05,C07,C09,C27,C29) under all different il-
luminations and expressions, so there are 170 im-
ages for each individual. We randomly selectl(l =
5,10,20) images of each person for training and the
rest for testing. For eachl , we do 20 random split
experiments.
Yale face database: The Yale face database con-
tains 165 images of 15 individuals(each person pro-
viding 11 different images) under various facial ex-
pressions and configurations. For this database, we
randomly selectl(= 3,6,8) for training and the rest
for testing. For eachl , we also do 20 random split
experiments.

Sample images of two people from these two
face database are shown in Fig.3.

5.2. Convergency of iterative procedure

First we examine the convergency of the objective
function and the projection matrices of the proposed
method on these two data sets. For both projec-
tion matrices and objective function value, we com-
pute the difference norm of two successive itera-
tions. The details of step differences versus iteration
number are shown in Fig.4.
Monotony and convergence of Objective function
Value: From Fig.4(a)(d) one can see the step dif-
ference of objective value in our method is always
positive until it converge to 0, this means that the
objective function value monotonously increases as

the iteration number and it converges after about 5–
10 iterations. This confirms the claim in Theorem 1.
The high convergence speed of the iterative proce-
dure guarantee that we can obtain the optimizedU
andV efficiently. While step difference of the objec-
tive value in TSA oscillates over the iteration and it
does not converge.
Convergence of projection matrices: Fig.4
(b,c,e,f) demonstrates that the projection matrices
U andV also converge when the objective function
converges in our new solution procedure. While for
TSA, solution matricesU andV oscillates over the
iteration and they do not converge.

5.3. Performance for face recognition

To evaluate recognition performance of different ap-
proaches, for eachl we do 20 random split exper-
iments and in each run we obtain the recognition
rate under all possible feature dimensionality. Fig.5
plots average recognition rate versus feature dimen-
sionality for MMC, TSA, LBMMC and our method
over the 20 random split experiments. For Base-
line method, the recognition task is conducted in the
original 1024-dimensional image space without any
preprocess. For TSA, LBMMC and our method, we
only show the recognition rate under feature dimen-
sionalityd×d i.e., 1,4,9, etc. For MMC, the recog-
nition rate under feature dimensionality 10i(i = 1 :
40) is shown. As can be seen, recognition rate of
all methods varies as feature dimensionality. How-
ever, in most cases recognition rate of algorithm 1 is
higher than that of others, so we can conclude that
our method outperforms others.

Then we show the top average recognition rate
of different methods and corresponding feature di-
mensionality(in parentheses) in Table 1 for different
l . Here one should note that for Algorithm 2, which
can automatically select suitable feature dimension-
ality, in each run we can only obtain its recognition
rate under feature dimensionality selected by the al-
gorithm 2 itself which may be different in different
runs.

What’s more, in each random split experiment,
there exists a top recognition rate for each method

‡http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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(a) images of two persons in PIE (b) images of two persons in yale

Figure 3: Face images from two databases
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Figure 4: Convergency of the iterative procedure on the two face databases. (a,b,c) results on PIE database;
(d,e,f) results on Yale database

by considering all possible feature dimensionality.
Table 2 shows the mean value and standard deriva-
tion(in parentheses) of these top recognition rates of
all methods over 20 random split experiments for
different l . In both table 1 and 2, the best results
are shown in boldface. From these results, we can
draw the following conclusions:

1. Our method Algorithm 1 mostly outperforms
all the other methods concerned in this work.

2. To obtain the top recognition rate, other meth-
ods need to consider all the possible fea-
ture dimensionality. However, with the auto-
matically selected feature dimensionality, our
method algorithm 2 can obtain competitive
recognition rate to TSA, and higher recogni-
tion rate to LBMMC and MMC.

6. Conclusions

Feature extraction is a key issue for face recogni-
tion. Conventional vector-based feature extraction
need to convert the image into higher dimensional
vector. Existing feature extraction approaches based
on matrix(tensor) representation of image and ma-
trix bidirectional projection encounters the problem
that there is no convergent solution or that the solu-
tion is non-optimal. To overcome these problems, in
this paper, we propose a novel matrix bidirectional
projection based feature extraction method. Differ-
ent from previous tensor subspace learning to max-
imize Fisher Criterion, which is trace ratio, the pro-
posed method employs maximum margin criterion,
which is trace difference. To obtain the optimal pro-
jection matrices, an iterative optimization procedure
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Figure 5: Average recognition rate vs. feature dimensionality(d×d for TSA, LBMMC and Algorithm 1, 10∗ i
for MMC is shown). (a,b,c) results on PIE database; (d,e,f) results on Yale database

Table 1: Top average recognition rate(dimensionality) of different methods(%)

PIE Yale
method

5 train 10 train 20 train 3 train 6 train 8 train
Baseline 29.3 44.3 61.4 43.3 54.5 64.4

MMC 68.2(70) 85.2(70) 92.0(70) 57.5(40) 74.7(40) 84.4(40)
TSA 73.5(122) 85.3(132) 90.8(132) 64.1(92) 82.7(92) 94.0(92)

LBMMC 68.1(152) 81.7(92) 88.6(82) 63.7(82) 79.3(122) 92.1(102)
Algorithm 1 74.2(102) 88.2(92) 94.8(92) 69.2(112) 85.1(102) 97.3(112)
Algorithm 2 72.6 87.4 91.7 65.1 81.6 93.1

is proposed. There are two key properties of the
proposed iterative optimization procedure: 1) it can
monotonously increase the objective value; and 2)
both the solution matrices and objective function are
convergent. Finally extensive and systematic face
recognition experiments on CMU PIE and Yale face
databases demonstrate the efficiency and effective-
ness of the proposed method.
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