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Abstract 

This paper presents an automated image registration approach to detecting changes in multi-temporal remote 
sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT) and has two phases. 
The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, 
Structured Local Binary Haar Pattern (SLBHP) combined with a fuzzy similarity measure is then used to build a 
new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal 
data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more 
effective in dealing with scale, rotation and illumination changes. 

Keywords: Registration, scale invariant feature transform, fuzzy membership, fuzzy similarity measure, 
change detection. 

 

1. Introduction 

As an advanced detection technology, remote sensing 
has been widely applied in many areas1. In particular, 
change detection is one of the most important 
applications in the remote sensing society. It is the 
process of identifying differences in the state of a land 
cover by analyzing a pair of images acquired on the 
same geographical area at different times. Since the 
1990s, scientists have made remarkable achievements in 
change detection techniques, including context-sensitive 
method2, GSM approach to automatic change detection 
in multi-temporal SAR images3, ratio analysis4, 
standardized processing5, registration noise reduction6, 
MTF-based change detection analysis7, automatic 
unsupervised change detection based on a RGM 
distribution8, etc. Typically, these methods are base on 

“difference image” and the most widely used operators 
are subtraction, ratio, and change vector analysis (CVA). 
Nowadays, change detection techniques have been 
applied to the investigation of forest resources9, land 
use/land cover dynamic detection10, assessment of 
environment disaster11, arrangement of urban growth12, 
and monitoring of national defense 13, etc. 

However, the change detection techniques 
mentioned above are performed after image registration. 
Generally a few control points and simple 
transformation formula are employed in image 
registration. Obviously, this procedure is simple, but it 
is time-consuming and not feasible to discern the 
appropriate control points when a large number of 
images need to be registered. Therefore, there is a need 
for automatic registration techniques that require little 
or no manual intervention. 
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The automatic registration process is usually carried 
out in four steps 14, namely, feature detection, feature 
matching, mapping function design, image 
transformation and re-sampling. In remote sensing 
application, there are several works focused on 
automatic image registration, such as correlation-based 
automatic registration algorithm15, mutual information 
similarity measure for registration16, template matching 
to search for the corresponding control points between 
the reference and sensed images17. In particular, SURF 

and hierarchical image matching strategy have been 
introduced to register remote sensing data which can 
detect changed area simultaneous with image 
registration18 19. It is well known that remote sensing 
images always acquired through different viewpoints, 
times and sensors. These factors may result in rotation, 
illumination changes or even affine transformation in 
multi-temporal images. In this situation, the efficiency 
of the methods mentioned above will be greatly reduced. 
Since the quality of registration is the key factor that 
dictates the validity and the reliability of the change 
detection results, effective tools are needed to improve 
the accuracy of registration in remote-sensing data. 

In 1999, scale invariant feature transform (SIFT)20, 21 

was introduced to generate feature points in a full image. 
These feature points appear invariant to any scaling, 
rotation or translation of the images. Recently, SIFT 
descriptor has been introduced to multi-spectral remote 
image registration and the experimental results 
demonstrate that SIFT-based automatic registration 
algorithm can be an effective tool to improve the 
performance of registration in high resolution remote 
image22. However, due to the diversity of 
multi-temporal images, it is impossible to design a 
perfect method to register all pixels in remote sensing 
images. Namely, even SIFT-based method should take 
into account registration errors, geometric deformation 
and noise corruption. In Ref. 23, we proposed a novel 
feature named Structured Local Binary Haar Pattern 
(SLBHP), which has been proven to be a good 
descriptor include the edges, texture and gray 
information. Therefore, in this paper, SIFT feature 
descriptor is integrated with SLBHP and fuzzy-based 
block matching technique to improve image registration. 
In addition, in order to evaluate the efficiency of the 
proposed method, the algorithm was used to detect 
change area in remote sensing images. Experiments 

carried out on multi-temporal remote sensing images 
confirm that the improved change detection algorithm is 
invariance to scale, rotation, and illumination 
transformations. 

This paper is organized as follows: Section 2 
provides a brief description of the SIFT feature and 
feature matching algorithm. Section 3 describes the 
proposed fuzzy-block matching change detection 
technique. The dataset used in the experiments and the 
obtained results are described in Section 4. Finally, in 
Section 5, conclusions are drawn. 

2. SIFT descriptor and keypoint matching 

2.1. SIFT local descriptor 

As described in Ref. 20, the construction of SIFT 
descriptor consists of four major stages, namely, 
scale-space peak selection, keypoint localization,  
orientation assignment and keypoint descriptor. 

2.1.1. Detection of scale-space extrema 

The scale space of an image is defined as a function, 
( , , )L x y σ , that is produced from the convolution of a 

variable-scale Gaussian, ( , , )G x y σ , with an input 
image, ( , )I x y : 

( , , ) ( , , ) ( , )L x y G x y I x yσ σ= ∗              (1) 

where ∗ is the convolution operation, and 

2 2 2( )/ 2
2

1( , , )
2

x yG x y e σσ
πσ

− += .             (2) 

 
 

Fig. 1. Difference-of-Gaussian images 
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To efficiently detect stable keypoint locations in 
scale space, SIFT used scale-space extrema in the 
difference-of-Gaussian function, ( , , )D x y σ , which can 
be computed from the difference of two nearby scales 
separated by a constant multiplicative factor k, as 
depicts in Figure 1: 

( , , ) ( ( , , ) ( , , )) ( , )
                ( , , ) ( , , )
D x y G x y k G x y I x y

L x y k L x y
σ σ σ

σ σ
= − ∗
= −

     (3) 

In order to detect the local maxima and minima of 
( , , )D x y σ , each sample point is compared to its eight 

neighbors in the current image and nine neighbors in the 
scale above and below (see Fig. 2). It is selected as a 
candidate only if its value is larger than all of these 
neighbors or smaller than all of them. 

2.1.2. Accurate keypoint localization 

Once a keypoint candidate has been found by 
comparing a pixel to its neighbors, the next step is to 
perform a detailed fit to the nearby data for location, 
scale, and ratio of principal curvatures. This information 
allows points to be rejected points that have low 
contrast or are poorly localized along an edge. 

2.1.3. Orientation assignment 

For each image sample, ( , )L x y , the gradient 
magnitude, ( , )m x y , and orientation, ( , )x yθ , is 
computed by using pixel differences: 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y= + − − + + − −

         (4) 
( , 1) ( , 1)( , ) tan( )
( 1, ) ( 1, )

L x y L x yx y arc
L x y L x y

θ + − −
=

+ − −
      (5) 

An orientation histogram is formed from the gradient 
orientations of sample points within a region around the 

keypoint. The orientation histogram has 36 bins 
covering the 360 degree range of orientations. Each 
sample added to the histogram is weighted by its 
gradient magnitude. Peaks in the orientation histogram 
correspond to dominant directions of local gradients. 
The highest peak in the histogram is detected, and then 
any other local peak that is within 80% of the highest 
peak is used to also create a keypoint with that 
orientation. 

2.1.4. Descriptor representation  

Figure 3 illustrates the computation of the keypoint 
descriptor. First the image gradient magnitudes and 
orientations are sampled around the keypoint location, 
using the scale of the keypoint to select the level of 
Gaussian blur for the image. In order to achieve 
orientation invariance, the coordinates of the descriptor 
and the gradient orientations are rotated relative to the 
keypoint orientation. 

The keypoint descriptor is shown on the right side of 
Figure 3. The figure shows a 2×2 array of orientation 
histograms, whereas it is observed that the best results 
are achieved with a 4×4 array of histograms with 8 
orientation bins in each. Namely, the feature descriptor 
vector of each keypoint contains 4×4×8 = 128 elements. 

2.2. Keypoint matching 

The best candidate match for each keypoint is found by 
identifying its nearest neighbor in the keypoints set from 
reference images. The nearest neighbor is defined as the 
keypoint with minimum Euclidean distance for the 
invariant descriptor vector. Since KD-tree algorithm has 
been proven to be an effective technique for fast 
searching, and nearest-neighbor queries, KD-tree 
algorithm is employed for feature matching in this paper. 

 

Fig. 3. Keypoint descriptor 

 

Fig. 2. Extrema of the difference-of-Gaussian images 
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Moreover, RANSAC is devised to remove the mismatch 
keypoint pairs. 

Recently, a number of SIFT descriptor variants and 
extensions, including PCA-SIFT24, GLOH (gradient 
location-orientation histogram)25, SURF (speeded up 
robust features) 26 and ASIFT (affine SIFT)27 have been 
developed. They claim more robustness and 
distinctiveness with scaled-down complexity or affine 
transform. Obviously all the improved SIFT algorithms 
can be directly apply to registration in remote sensing 
images. 

3. Change detection in remote sensing images 

This section describes the computation of affine 
parameters and the re-sampling of affine image. In 
addition, SLBHP-based fuzzy similarity measure is 
employed for block matching between reference and 
affine image to improve image registration. 
Simultaneously, change area can be determined 
according to the SLBHP-based similarity score. 

3.1.  Affine parameters determination and the 
construction of affine image 

After the SIFT feature correspondence has been 
established, the mapping function is to be constructed. 
One of the most frequently used mapping functions is 
affine transformation, which can map a parallelogram 
onto a square. Therefore, we assume that there exists an 
affine transform between the reference and sensed 
image. Based on this assumption, the transformation of 
[x y]T  in the reference image to [u v]T in the sensed 
image can be written as the following equation: 

51 2

3 4 6

mm mu x
m mv y m

     
= +      

      
         (6) 

where mi  (i=1, 2, …, 6) are affine parameters. 
This equation shows only a single match, in other 

words, any number of further matches can be added. 
Specifically, the equation above can be rewritten to 
gather the unknowns into a column vector: 

1
1 1 1

2
1 1 1

3

4

5

6

0 0 1 0
0 0 0 1

... ...
0 0 1 0

0 0 0 1
n n n

n n n

m
x y u

m
x y v

m
m

x y u
m

x y v
m

 
    
    
    
   = 
    
    
         

        (7) 

Obviously, at least 3 matches are needed to provide a 
solution. The linear system can be rewritten as the 
following equation: 

AX b= .                    (8) 
where the parameter vector X can be determined by 
least-squares solution, as given below: 

1( )T TX A A A b−= .              (9) 
Therefore, the affine image of the sensed image can be 
constructed via affine parameters: 
 Generate an affine image, I, where the size of I is 

equal to the reference one; 
 For each pixel (u, v) in I, let I (u, v) = Iꞌ 

(m1u+m2v+m5, m3u+m4v+m6), where I’ is the 
sensed image. Since m1u+m2v+m5 and 
m3u+m4v+m6 are real numbers, the bilinear 
interpolation can be employed to determine the 
gray value of Iꞌ (m1u+m2v+m5, m3u+m4v+m6). 

3.2. SLBHP for fuzzy-block matching 

The first step for block matching is the determination of 
similarity measure. There exist a lot of methods to 
define similarity function where some include the edges, 
texture and gray information. In particular, the LBP 28 

operator is one of the best performing texture 
descriptors and it has proven to be invariance to 
gray-level changes. In our earlier work, we proposed 
SLBHP (Structured Local Binary Haar Pattern) 23  that 
modified from LBP with Haar wavelet for pixel-based 
graphics retrieval. In this paper, SLBHP feature was 
integrated with fuzzy theory to bulid a fuzzy similarity 
function for block matching between reference and 
sensed images. 

3.2.1. Structured Local Binary Haar Pattern  

The SLBHP adopts four types of Haar features 29, which 
capture the changes of gray values along the horizontal, 
the vertical and the diagonal directions as shown in 
Figure 4(a). Only the polarity of Haar feature is 
involved in SLBHP, while the magnitude is discarded. 
The polarity relationships are then considered as a 
binary value as in LBP. It is noted that the number of 
encoding patterns has been reduced from 256 to 16. 
Moreover, SLBHP encoding spatial structure of two 
adjacent rectangle regions in four-directions. Thus, the 
SLBHP has compact encoding patterns and incorporates 
more semantic structure information. 
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Let  ( 0,  1,  ,  8)ia i =   be the corresponding gray 
values for a 3×3 window at the center pixel (x, y). The 
SLBHP value of (x, y) is given by the following 
equation: 

( )
4

1

1
( , ) ( , ) 2 p

p
p

S LBHP x y B H N x y −

=

= ⊗ ×∑     (10) 

where 

( )

1 2 3

8 0 4 1 2

7 6 5

3 4

1 1 0 0 1 1
( , ) ,  1 0 1 , 1 0 1 ,

0 1 1 1 1 0

1 1 1 1 0 1
1 if | |

 0 0 0 , 1 0 1 ,  ,
0 otherwise

1 1 1 1 0 1

a a a
N x y a a a H H

a a a

x T
H H B x

     
     = = − = −     
     − − − −     

−   
>   = = − =        − − − −   

 

and T is a threshold (15 in our experiments). By this 
binary operation, the feature becomes more robust to 
global lighting changes. It is noted that pH  denotes a 

Haar-like basis function and ( , )pH N x y⊗  denotes the 

difference between the accumulated gray values of the 
black and red rectangle as shown in Figure 4 (a). 
Unlike traditional Haar feature, here the rectangles are 
overlapped with only one pixel as shown in Figure 4(b). 
An example of SLBHP feature is shown in Figure 4(c). 

3.2.2. Fuzzy similarity for block matching 

It is well known that the fuzzy theory has the capability 
to deal with uncertainty existing in images. For 
example, fuzzy sets have been successfully introduced 
to the analysis of landslide susceptibility in remote 
sensing images 30, image thresholding31 and protein 
similarity searching32. In this paper, SLBHP is 
integrated with fuzzy theory to construct a fuzzy 
similarity function for block matching to refine the 
alignment between images.  

The fuzzy membership function of a block R can be 
defined as the following equation: 

{ }
( , )

( , )
( )

bloksize
x y R

I SLBHP x y i
f i ∈

=
=
∑

      (11) 

where ( )
1 if    is true
0 if    is false

P
I P

P


= 


and blocksize denotes 

the number of pixel in a block (11×11 in our 
experiments). It is worth noting that [0,1]f ∈  and the 
fuzzy membership function contains information about 
the distribution of the local patterns, such as edges and 
spots, over the image region R. Consequently, the 
similarity measure between blocks is defined as the 
following equation. 

2 2

( ) ( )
( , )    (12)

( ) ( )
affine reference

affine reference
i affine reference

j j

f i f i
R f f

f j f j

⋅
=

⋅
∑

∑ ∑
 

where affinef  and referencef  are the fuzzy membership 
function of blocks in the affine and reference image, 
respectively. , [0,15]i j∈  refer to the value of SLBHP. 

Finally, the 11×11 neighbors of each pixel are 
generated as a block in the reference image. The block 
is devised to search in the corresponding pixel’s 30×30 
neighborhood window in the affine image. As a result, 
each pixel will attach fuzzy similarity scores in the 
sub-window. If the highest score is lower than a 
specified threshold, the pixel will be denoted as a 
changed point. 

 

Fig. 4. An example of SLBHP. (a) Four Haar features; (b) 
corresponding Haar features with overlapping; (c) an example 
to compute SLBHP values. 

 

Fig. 5. Block matching in sub-window 
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3.3. Algorithm summary 

Step1: Generate SIFT features of the reference and 
sensed image; 

Step2: KD-tree algorithm for SIFT feature matching; 
Step3: RANSAC to remove mismatch points; 
Step4: Compute affine parameters via least-squares 

solution; 
Step5: Construct an affine image of the sensed image 

according to the affine transform matrix; 

Step6: Generate membership function for each pixel in 
the reference image based on SLBHP.  

Step7: Match in the corresponding sub-window in the 
affine image and denote changed area in terms of 
the fuzzy similarity measure. 

Figure 6 depicts the flowchart of the proposed 
algorithm.  

Reference 
image

Sensed  
image

SIFT feature 
extraction

SIFT feature 
extraction

Feature 
matching

Compute affine 
parameters

SLBHP and 
fuzzy-based 

block matching

Affine 
image

Changed 
area

 

Fig. 6. The proposed SIFT and SLBHP-based block matching change detection algorithm 

4. Experimental results 

4.1. Description of the experiments 

In this section, three tests have been conducted using 
several remote sensing images to illustrate the 
feasibility and the robustness of the proposed technique. 
The simulated dataset was acquired by unman low 
altitude remote sensing system of our lab. In particular, 
a section of the scene acquired in an urban area near 

Xiamen city of Fujian Province, P. R. China, was 
selected. 

Fig. 7(a) and (b) show the reference and the sensed 
image acquired in 2009 and 2010, respectively. As is 
readily apparent (see the middle part of the sensed 
image), a new building occupied a notable portion given 
the two dates considered. The available ground truth 
map (see Fig. 7(c)) is used to assess change-detection 
errors. 
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In the first experiment, the sensed image is rotated 
to evaluate the performance of rotation invariance of the 
SLBHP-based block matching strategy. In the second 
experiment, 2×2 sub-sampling of sensed image is used 
to present the invariance in scale change of our 
approach. 

The third experiment focuses on the invariance of 
gray-level changes. The results obtained by the 
proposed technique will be compared with other three 
block matching strategies, namely, square difference, 
correlation and correlation coefficient, as given below: 

 Square difference 
2

', '
1 2 2

', ' ', '

[ ( ', ') ( ', ')]
( , )

( ', ') ( ', ')
x y

x y x y

T x y I x x y y
R x y

T x y I x x y y

− + +
=

+ +

∑

∑ ∑
 (13) 

 Correlation 

', '
2 2 2

', ' ', '

[ ( ', ') ( ', ')]
( , )

( ', ') ( ', ')
x y

x y x y

T x y I x x y y
R x y

T x y I x x y y

⋅ + +
=

+ +

∑

∑ ∑
 (14) 

 Correlation coefficient 

', '
3 2 2

', ' ', '

[ '( ', ') '( ', ')]
( , )

'( ', ') '( ', ')
x y

x y x y

T x y I x x y y
R x y

T x y I x x y y

⋅ + +
=

+ +

∑

∑ ∑
(15) 

where
'', ''

1'( ', ') ( ', ') ( '', '')
x y

T x y T x y T x y
w h

= −
⋅ ∑  ,

'', ''

1'( ', ') ( ', ') ( '', '')
x y

I x x y y I x x y y I x x y y
w h

+ + = + + − + +
⋅ ∑

are mean template brightness and mean patch brightness, 
respectively. 

4.2. Rotation and scale invariant 

The first experiment is related to the problem of the 
analysis of rotation invariant of the proposed approach. 
Therefore, the sensed image was being rotated 90 
degrees and 45 degrees clockwise (see Fig. 8(a) and Fig. 
8(b)). The change results are show in Fig. 8(c) and Fig. 
8(d), respectively.  It is worth noting that the proposed 
technique provided quite accurate estimates of the 
change area Namely, the SIFT-SLBHP method is 
invariance to rotation. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. (a) Reference image, (b) Sensed image, (c) 
Ground-truth map of the changed area. 
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Fig. 8. (a) Reference image, (b) Sensed image, (c) Ground-truth map of the changed area. (d) Reference map of the changed area. 

The second experiment conducted on a 2×2 
sub-sampling of the sensed image (Fig. 9(a)). Our goal 
here is to demonstrate the scale invariant of SIFT 
approach. Figure 9(b) illustrates the obtained change 
detection map in this simulation. The result is a little 

worse than we achieved in the first experiment. The 
main reason is that some information of the sensed 
image is lost during the construction of the affine map. 
Nonetheless, as shown in Figure 9(b), the result detect 
by our approach still encouraging. 

 
Fig. 9. (a) 2×2 sub-sampling of the sensed image, (b) Reference map of the changed area. 
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4.3. gray-level invariant 

Firstly, the sensed image was converted by reducing 
gray value of each pixel to 1/3 of its origin one (see 
Figure 10(a)). The change detection maps obtained by 
the square difference, correlation, correlation coefficient 
and our SLBHP similarity measure are given in Figure 
10(c) to10(e), respectively. 

From figure 10(c) to 10(e), one can see clearly that 
there were many isolated pixels or some small isolated 
areas produced by the former three methods, whereas 
our approach obtained quite ideal result. In particular, as 
shown in Figure 10(b), if we reduce the gray value of 
each pixel by half, the former three methods all fail 
(Figure 10(g)-10(i)). On the contrary, the proposed 
SLBHP block matching can detect change place more 
encouraging, as shown in Figure 10(j). These results 
verify that the proposed method is effective in 
gray-level changes. 

5. Conclusions and discussion 

A novel automatic remote-sensing image registration 
and change detection approach based on SIFT and 
SLBHP has been proposed in this paper. The technique 
employed SIFT feature descriptor to improve image 
registration and SLBHP-based block matching for 
change detection. The experimental results confirmed 
the effectiveness of the proposed approach. In particular, 
the proposed technique is invariance to scale, rotation, 
and gray-level transformations. 

As a final remark, it is important to point out that, 
although the proposed method can be used to design a 
system for the change detection in multi-temporal 
remote-sensing images, potentially, it is general and can 
be considered for any pair of large-size multi-temporal 
images. For this reason, as future developments of this 
work, we plan to extend the experimental investigation 
to other data sets and change-detection problems. In 
addition, our algorithm will be compared with other 
state-of-the-art methodologies of registration to better 
assess the robustness of the approach in different 
scenarios. 
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Fig. 10. (a) two third gray value of the sensed image, (b) half gray value of the sensed image, (c), (d), (e) , (f) Reference maps of the 
changed area of Fig. 10 (a) acquired by square difference, correlation, correlation coefficient and the proposed method, respectively. 
(g), (h), (i) , (j) Reference maps of the changed area of Fig. 10 (b) acquired by square difference, correlation, correlation coefficient 
and the proposed method, respectively. 
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