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Abstract

Minor component analysis (MCA) are used in many applications such as curve and surface fitting, robust
beamforming, and blind signal separation. Based on the generalized eigen-decomposition, we present a
completely different approach that leads to derive a novel MCA algorithm. First, in the sense of gen-
eralized eigen-decomposition, by using gradient ascent approach, we derive an algorithm for extracting
the first minor eigenvector. Then, the algorithm used to extract multiple minor eigenvectors is proposed
by using the orthogonality property. The proofs and rigorous theoretical analysis show that our proposed
algorithm is convergent to their corresponding minor eigenvectors. We identify three important char-
acteristics of these algorithms. The first is that the algorithm for extracting minor eigenvectors can be
extended to generalized minor eigenvectors easily. The second is that the corresponding eigenvalues can
be computed simultaneously as a byproduct of this algorithm. The third is that the algorithm is globally
convergent. The simulations have been conducted for illustration of the efficiency and effectiveness of
our algorithm.
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1. Introduction

Minor component analysis (MCA) is a statistical
method for extracting eigenvectors associated with
the smallest eigenvalue of covariance matrix of in-
put data. There are many applications for MCA,
such as curve and surface fitting1, beamforming2,3,
adaptive signal processing4,5, etc. Neural networks
method for MCA has been studied in recent years.
For these algorithms and their references, refer to
1,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21.

The learning algorithm of MCA neural networks
is described by a stochastic discrete-time(SDT) sys-
tem. Many authors have proven the convergence
by using continuous ordinary differential equation-
s (ODE) approximation22. Since the convergence of
continuous ODE does not imply the convergence of
corresponding discrete ones when the learning rate
is a constant23,24, we can not use continuous ODE
approximation to prove the convergence. On the
other hand, because the behavior of conditional ex-
pectation of the weight vector can be studied by de-
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terministic discrete-time(DDT) system, it is reason-
able to study the SDT algorithm by its DDT system
indirectly24,29. The DDT system at least can par-
tially illustrate the phenomena of the corresponding
SDT system.

Currently, the studies of the convergence of the
DDT system of PCA or MCA algorithms are very
mature, see our recent works 25,26,27,28,29. For con-
stant learning rates, the convergence problem of
the MCA learning algorithms has been studied sys-
tematically recently via their DDT systems, see
7,12,23,26,29,32,33,34,35. Based on the careful analysis
of convergence properties of the existing algorithm-
s, many novel convergent algorithms have been pro-
posed, for example, see 25,26,27,32,33,34,35. However,
most of these algorithms are derived by using math-
ematical inductions for convergence purpose, which
are not meaningful optimization functions.

In this paper, a novel algorithm is pro-
posed based on a viewpoint of generalized eigen-
decomposition(GED). The GED is to extract the
generalized eigenvectors of a matrix pencil (A,B),
which is given as follows 36:

Aw = λBw (1)

where A and B are n× n positive definite and sym-
metric matrices in most signal processing applica-
tions. The positive scalar λ and the corresponding
vector w are called generalized eigenvalue and gen-
eralized eigenvector of matrix pencil (A,B) respec-
tively. Without loss of generality, assume the ma-
trix pencil has n positive generalized eigenvalues,
λ1 > · · · > λn, and their corresponding generalized
eigenvectors φ1, · · · ,φn, the following properties will
hold36:

Aφi = λiBφi (2)
φ

T
i Aφ j = δi j, i, j ∈ {1, · · · ,n} (3)

where δi j is the Kronecker delta function. For the
case of some eigenvalue with multiplicity larger than
one, the problem is more difficult. Our algorithm
cannot guarantee the convergence. We refer to φ1
and φn as the first principal generalized eigenvec-
tor and the first minor generalized eigenvector re-
spectively. In many practical applications such as

dimension reduction and signal processing, extract-
ing the principal or minor generalized eigenvectors
adaptively are critical30,31.

Noted that Bφi =
1
λi

Aφi, let φ̃i =
1√
λi

φi, we have
that

Bφ̃i =
1
λi

Aφ̃i, (4)

φ̃
T
i Aφ̃ j = δi j. (5)

It can be easily shown that φ̃n is the first principal
generalized eigenvector of matrix pencil (B,A). If φ̃n
is computed, the first minor generalized eigenvector
(A,B) can be obtained accordingly as following,

φn =
φ̃n√

φ̃ T
n Bφ̃n

. (6)

Let B= In, to extract the minor eigenvector of matrix
A is equivalent to find the minor generalized eigen-
vector of matrix pencil (A,B). So we can extract the
minor eigenvector of matrix A by finding the princi-
pal generalized eigenvector of matrix pencil (B,A).
Based on the above observations, we propose a new
MCA algorithm from this completely different per-
spective. The major contribution of our paper is
that by using a generalized eigen-decomposition ap-
proach MCA algorithms have three important char-
acteristics. The first is that the algorithms for ex-
tracting minor eigenvectors and minor generalized
eigenvectors are unified. The simulation results on
extracting the minor generalized eigenvectors are
shown in 37. The second is that the correspond-
ing eigenvalues can be computed simultaneously as
a byproduct of these algorithms. The third is that
this algorithm is globally convergent. The rest of
this paper is organized as follows. In section 2,
the algorithm for extracting minor eigenvectors is
derived from the perspective of generalized eigen-
decomposition. The convergence analysis is pre-
sented in section 3. Section 4 provides the simu-
lations in order to confirm the efficiency and effec-
tiveness of our algorithms. In section 5, conclusions
are presented.
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2. The Algorithm

Consider a linear neuron with input x(k) =
[x1(k),x2(k), · · · , xn(k)]T ∈ Rn, the weight vector
w(k) ∈ Rn and output y(k) = wT (k)x(k) at time k.
x(k)(k = 0,1, · · ·) is a zero-mean discrete-time s-
tochastic process. Such process is constructed as
a sequence x(0),x(1), · · · of independent and iden-
tically distributed samples upon a distribution of a
random variable. And weight vector w(k) deter-
mines the relationship between input x(k) and output
y(k) at time k.

Let covariance matrix A = E{x(k)xT (k)}. Ob-
viously the eigenvalues of this matrix are nonneg-
ative. In our algorithm, some of eigenvalues can
have a multiplicity more than one. However, for
the simplicity of theoretical analysis, we assume
λ1,λ2, · · · ,λn to be eigenvalues of A ordered by λ1 >
λ2 > · · · > λn > 0. Since A is a symmetric matrix,
then there exists an orthonormal basis of Rn com-
posed by eigenvectors of matrix A. Suppose that
{φi|i = 1, · · · ,n} is an orthonormal basis in Rn and
each φi is a unit eigenvector of A corresponding to
the eigenvalue λi.

As stated before, to extract the minor eigenvec-
tors of matrix A is equivalent to find the princi-
pal generalized eigenvectors of matrix pencil (B,A)
where B = In. Based on this observation, we can
derive our new algorithm directly by using an ob-
jective function. Assume w1, · · · ,w j−1 have already
converged to the j− 1 principal generalized eigen-
vectors of matrix pencil (B,A), taking into account
the constrains wT

i Aw j = δi j for i = 1, · · · , j− 1, the
objective function to extract the jth principal gener-
alized eigenvector of matrix pencil (B,A) is

J(w j) = wT
j Bw j +

j−1

∑
i=1

αiwT
j Awi +µ(wT

j Aw j−1),

where µ and αi are Lagrange multipliers. When
the function J(w j) reaches the maximum value, the
principal generalized eigenvector of matrix pencil
(B,A) will be the maximum solution of J(w j). The
optimal value of µ and αi can be determined by
multiplying the gradient of J(w j) with respect to
w j by wT

j or wT
i from the left, and equating the re-

sult to zero. Taking into account that wT
i Aw j = δi j,

the optimum value µ and αi are µ =−wT
j Bw j,αi =

−2wT
i Bw j.

Substituting these optimum value to J, the gradi-
ent of J(w j) with respect to w j is

∇w j J(w j) = 4Bw j−2Bw jwT
j Aw j

−2
j−1

∑
i=1

(wT
j AwiBwi +wT

j BwiAwi)

−2wT
j Bw jAw j.

By using gradient ascend method, let
W (k) = [w1(k), · · · ,w j(k)] and ‖W (k)‖2 =
[‖w1(k)‖2, · · · ,‖w j(k)‖2], we obtain the following
algorithm in matrix form,

W (k+1) = W (k)+η(2BW (k)
−AW (k)UT (W (k)T BW (k))
−BW (k)UT (W (k)T AW (k)))
·∅‖W (k)‖2, (7)

where η is the learning rate and UT[·] sets all ele-
ments below the diagonal of its matrix argument to
zero, i.e. upper triangular. And W (k)∅‖W (k)‖2 =
[w1(k)/‖w1(k)‖2, · · · ,w j(k)/‖w j(k)‖2]. Similarly,
assume yi(k) = wi(k)T x(k), considering B = In, the
SDT version of algorithm is

w j(k+1) = w j(k)+η(2w j(k)

−
j

∑
i=1

x(k)yi(k)w j(k)T wi(k)

−
j

∑
i=1

wi(k)y j(k)yi(k))/‖w j(k)‖2.

(8)

Remark 1. When the above algorithm converges,
the weight vector is different with the correspond-
ing eigenvector with a scale factor which equals to
the inverse of square root of its associated eigenval-
ue. After the process of normalization, the weight
vector will be our desired minor eigenvector.

3. Theoretical Analysis

Direct analysis of the stochastic discrete time learn-
ing algorithm (8) is very difficult. Taking the con-
ditional expectation E{w j(k+1)|w j(0), x(i), i < k}
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to this algorithm and identifying the conditional ex-
pected value as the next iteration, we have its cor-
responding DDT algorithm (7). Convergence anal-
ysis of this DDT algorithm can partially illustrate
the convergence phenomena of its SDT algorithm.
Here, we can only show the convergence of the al-
gorithm for sequentially extracting minor eigenvec-
tors.

Mathematic induction method is used. First,
when j = 1, we will show the convergence of the
following algorithm

w1(k+1) = w1(k)+η(2
w1(k)
‖w1(k)‖2 −Aw1(k)

−w1(k)
wT

1 (k)Aw1(k)
‖w1(k)‖2 ). (9)

To show the weight vector w1(k) converges to the
minor eigenvector with a scalar factor, three steps
are used. First, we show that the weight vector of
algorithm is bounded in iteration, i.e., our algorith-
m is feasible in practice. Then, that the direction
of weight vector converges to that of the eigenvec-
tor associated with the smallest eigenvalue will be
proved. In the end, by using the results of previous
two steps, we show that the norm of weight vector
will converge to a constant, thus proving the conver-
gence.

Since vector set {φ1, · · · ,φn} forms an orthogo-
nal basis of Rn, for each k > 0, w1(k) can be repre-
sented as

w1(k) = zn(k)φn +
n−1

∑
j=1

ε j(k)φ j (10)

where zn(k) and ε j(k) are constants. Substitute (10)
into (9), it follows that

zn(k+1)=
[

1+η

(
2

‖w1(k)‖2 −λn−β1(k)
)]

zn(k),

(11)
and

ε j(k+1)=
[

1+η

(
2

‖w1(k)‖2 −λ j−β1(k)
)]

ε j(k),

(12)
for 1 6 j 6 n − 1, where k > 0, and β1(k) ≡
wT

1 (k)Aw1(k)
‖w1(k)‖2 . Clearly, λn 6 β1(k)6 λ1 for k > 0.

Lemma 1. Suppose that there exists a constant
η0 > 0 such that

η0 < η <
1

2λ1
, (13)

and w1(0) is not orthogonal to the eigen-subspace
Vλn , then there exists a time k1 such that ‖w1(k)‖2 ∈

[c0,c1] for k > k1, where c0 = [1−2ηλ1]
2 1

λ1
and

c1 =

[
1+2η

(
1
c0
−λn

)]2 1
λn

.

Proof: Given in the Appendix.

Remark 2. It is required that initial value w1(0) is
not orthogonal to eigensubspace Vλn . If w1(0) is or-
thogonal to Vλn , i.e., w1(0)∈V⊥

λn
, where V⊥

λn
is the or-

thogonal complement space of Vλn , the convergence
is not guaranteed. However, in practical application-
s, the unstable situation cannot be observed since the
dimension of V⊥

λn
is less than that of Rn, and any s-

mall disturbance can make w1(0) non-orthogonal to
Vλn .

Lemma 1 shows that ‖w1(k)‖ will be bounded
below and above if some initial conditions are satis-
fied, thus, algorithm (9) is reasonable.

Lemma 2. Under the conditions of Lemma 1, the
angle between w1(k) of algorithm (9) and eigenvec-
tor φn will approach to zero. Moreover,

β1(k)−λn 6
n−1

∑
j=1

(λ j−λn) ·θ k−k1 ·
[

ε j(k1)

zn(k1)

]2

, (14)

for k > 0, and

∑
j 6=n

[
ε j(k+1)
zn(k+1)

]2

6 θ
k+1−k1 ·∑

j 6=n

[
ε j(k1)

zn(k1)

]2

→ 0

as k→+∞, where

θ =

[
1− η(λn−1−λn)

1+2η/c0

]2

(15)

for k > k1.
Proof: Given in the Appendix.
Lemma 2 means that the direction of weight vec-

tor approaches to the direction of vector φn.
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Lemma 3. Assume the conditions of Lemma 1 hold,
and 2η(λ1 +λn +

√
λ1λn)< 1, then there exist con-

stants k1, Π1, θ1 and θ2 so that

|zn(k+1)− 1√
λn
| 6 (k− k1 +1) ·Π1

·
[

e−θ2(k−k1+1)+max
{

e−θ1(k−k1),e−θ2(k−k1)

}]

for k > k1, where θ1 = −lnθ and θ2 = −lnδ with

δ = 1− 2η
√

λn√
c0
− 2ηλn. Clearly, θ1,θ2 > 0 and

δ < 1.
Proof: Given in the Appendix.

Theorem 1 If the conditions of Lemma 1 and Lem-
ma 3 are satisfied, then the w1(k) of algorithm (9)
will converge to the eigenvector φn with a scale fac-

tor
1√
λn

as k→+∞.

Proof: By Lemma 3, clearly,

lim
k→+∞

zn(k) =
1√
λn

. (16)

Then, using (16), and Lemma 2,

ε
2
j (k) =

[
ε j(k)
zn(k)

]2

· z2
n(k)→ 0 (17)

as k→+∞.
From (10) together with (16) and (17), it follows

that

lim
k→+∞

w1(k) =
φn√
λn
∈Vλn .

The proof is completed.
Up to now, the convergence has been shown for

the case of j = 1. Assume for i 6 j−1, wi have al-

ready converged to
1√

λn−i+1
φn−i+1, we will prove

the convergence of w j in the remaining part of this

section. The DDT version of w j(k) is

w j(k+1) = w j(k)+η

(
2w j(k)

−w j(k)w j(k)T Aw j(k)−Aw j(k)

−
j−1

∑
i=1

Awi(k)wi(k)T w j(k)

−
j−1

∑
i=1

wi(k)wi(k)T Aw j(k)
)

÷‖w j(k)‖2. (18)

Expressing w j(k) as that in (10), we have the follow-
ing equations,

αi(k+1) = [1−η (λi +β j(k))]αi(k), (19)

for n− j+1 < i 6 n,

zn− j+1(k+1) =

[
1+η

(
2

‖w j(k)‖2 −λn− j+1

−β j(k)
)]

zn− j+1(k), (20)

and

εi(k+1) =
[

1+η

(
2

‖w j(k)‖2 −λi−β j(k)
)]

εi(k),

(21)
for 1 6 i < n− j + 1, where k > 0, and β j(k) ≡
wT

j (k)Aw j(k)

‖w j(k)‖2 . Clearly, λn 6 β j(k) 6 λ1 for k > 0.

Let Π(k) = ∑
n− j
i=1 εi(k)2 + zn− j+1(k)2 and Λ(k) =

∑
n
i=n− j+2 αi(k)2.

Lemma 4. With the same conditions in Lemma1,
then there exists time k1 such that ‖w j(k)‖2 ∈ [c0,c1]
for k > k1 where c1 is the same definition as that

in Lemma 1, c0 = [1−2ηλ1]
2 (

1
λ1
− c2) and c2 is a

constant less than 1
λ1

. Moreover, limk→∞ αi(k) = 0
exponentially for n− j+1 < i 6 n.

Proof: Given in the Appendix.
By using the same method in Lemma 2, we have

the following lemma,

Lemma 5. Under the conditions of Lemma 4,
then the angle between w j(k) of algorithm (18) and
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eigenvector φn− j+1 will approach to zero. Moreover,∣∣∣∣β j(k)−λn− j+1

∣∣∣∣ 6
n− j

∑
i=1

(λi−λn− j+1) ·θ k−k1

·
[

εi(k1)

zn− j+1(k1)

]2

+
n

∑
i=n− j+2

∣∣∣∣λi

−λn− j+1

∣∣∣∣ ·δ k−k1
1

·
[

αi(k1)

zn− j+1(k1)

]2

,

for k > 0, and
n− j

∑
i=1

[
εi(k+1)

zn− j+1(k+1)

]2

6 θ
k+1−k1

·
n− j

∑
i=1

[
εi(k1)

zn− j+1(k1)

]2

→ 0

as k→+∞, where δ1 = 1−2ηλn and

θ =

[
1−

η(λn− j+2−λn− j+1)

1+2η/c0

]2

(22)

for k > 0.
Similarly, the following lemma holds.

Lemma 6. Assume the conditions of Lemma 4 hold,
and 2η(λ1 +λn− j+1 +

√
λ1λn− j+1) < 1, there exist

constants k1, Π1, θ1 and θ2 so that∣∣∣∣zn− j+1(k+1)− 1√
λn− j+1

| 6 (k− k1 +1) ·Π1

·
[
e−θ2(k−k1+1)

+max
{

e−θ1(k−k1),

e−θ2(k−k1)

}]
for k > k1, where θ1 = −ln(max{θ ,δ1}) and θ2 =

−lnδ with δ = 1−
2η
√

λn− j+1√
c0

−2ηλn− j+1. Clear-

ly, θ1,θ2 > 0 and δ < 1.
Theorem 2 If the conditions of Lemma 4 and Lem-
ma 6 are satisfied, the w j(k) of algorithm (18) will
converge to the eigenvector φn− j+1 with a scale fac-
tor 1√

λn− j+1
as k→+∞.

Proof: By Lemma 6, clearly,

lim
k→+∞

zn− j+1(k) =
1√

λn− j+1
. (23)

Then, using (23), and Lemma 4,5,

ε
2
j (k) =

[
ε j(k)

zn− j+1(k)

]2

· z2
n− j+1(k)→ 0 (24)

for 1 6 j < n− j + 1 and limk→∞ α2
i (k) = 0 expo-

nentially for n− j+1 < i 6 n.
From (10) together with (23) and (24), it follows

that

lim
k→+∞

w j(k) =
φn− j+1√
λn− j+1

∈Vλn− j+1 .

The proof is completed.

Remark 3. By Theorem 1 and Theorem 2, we
know that our algorithm can not only extract the mi-
nor eigenvector, but also compute the corresponding
eigenvalue whose value equals to 1/‖w̃‖2, where w̃
represents a converged weight vector.

Remark 4. For choosing practical learning rate
η to guarantee the convergence, practically, be-
cause the exact values of λ1 and λn are un-

known, since Trace(A) =
n

∑
i=1

λi, we can roughly let

η =
1

3Trace(A)
, where Trace(A) = ∑

N
k=1 x2(k)/N,

which can be computed incrementally. Based on our
analysis, the varying learning rate η does not affect
the convergence. But theoretical analysis of the im-
pact of the varying η is very difficult.

4. Simulations

In this section, we perform a few simulations on the
algorithm (8) to confirm the convergence results and
illustrate the good performance by using MATLAB
software. There are many MCA algorithms, we can-
not compare each of them. Because MöLLER15 is a
successfully improved MCA algorithm and OJA+16

is the original online MCA learning algorithm, we
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only compare the performance of the novel algo-
rithm with the performance of MöLLER, and OJA+.
For simplicity, the novel algorithm (8) is referred to
as GM.

A sequence of 20-dimensional signals are gener-
ated, whose covariance matrix has the two smallest
eigenvalues 0.3445, 0.3838 and the largest eigenval-
ue 1.9711. We generate the input sequence xk,1 6
k 6 20000 by repeating adding zero-mean gaussian
noise to the previous signal sequence with 0.1 vari-
ance. If the number of samples is large enough, it is
easy to show that the covariance matrix A = E[xkxT

k ]
is the same as that of the signal covariance matrix.
The following evaluation function is used to mea-
sure the accuracy of those algorithms. The direction
cosine measures the accuracy of direction of the es-
timated eigenvectors,

Direction Cosine(k) =
|w(k)T φ |
‖w(k)‖‖φ‖

, (25)

where w(k) is the weight vector at time k for any
one of previous mentioned algorithms, φ is the actu-
al corresponding eigenvector of matrix A.

In the first set of experiments, we compute the
first minor eigenvector by using algorithms GM, O-
JA+ and MöLLER. Let the learning rate η = 0.01
for all algorithms and the same initial weight vector
is generated randomly with unit norm. The averaged
value curves of evaluation function of 50 indepen-
dent runs are drawn in Fig.1.
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Fig. 1. Performance of extracting the first minor eigenvec-
tor using algorithms GM, OJA+ and MöLLER respectively.

From Fig.1, we could observe that GM algorithm
is convergent, which confirms the convergence the-
ory. The rate of convergence of GM is almost the
same as that of OJA+. And both of two algorithm-
s are faster than the algorithm MöLLER. Because

the OJA+ algorithm has the limitation that the minor
eigenvalue must be less than 1, so our algorithm GM
is more suitable in practical applications.

In the second set of experiments, we will show
the impact of different choosing of learning rates.
We still use the input sequence in the first set of
experiments. To illustrate it, we perform algo-
rithm GM to extract the first minor eigenvector
with different learning rates η = 0.02,0.01,0.005
with the same initial weight vector. The value
curves of evaluation function are drawn in Fig.2.
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Fig. 2. Performance of algorithm GM with learning rate
η = 0.02,0.01,0.005 respectively.

From Fig.2, it has been shown that the larger
the learning rate is, the more oscillated the algo-
rithm is. In the third set of experiments, the a-
bility of algorithm GM to extract multiple minor
eigenvectors is shown. Here, the same input se-
quence of previous experiments is used. The first
three minor eigenvectors are computed using our al-
gorithm GM. The learning rate η = 0.01. The val-
ue curves of evaluation function are drawn in Fig.3.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Samples(*100)

D
ire

ct
io

n 
C

os
in

e

First Minor Eigenvector
Second Minor Eigenvector
Third Minor Eigenvector

Fig. 3. Performance of algorithm GM for extracting the first
three minor eigenvectors.

From Fig.3, the efficiency of algorithm GM is
shown for extracting multiple minor eigenvectors.
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Please note that the algorithms OJA+ and MöLLER
can not extract multiple minor eigenvectors. Fur-
ther experiments are performed to confirm the con-
vergence of our algorithms with different standard
deviations of the input data and more higher dimen-
sional data, for the limitation of space, which are not
shown here.

5. Conclusions

A completely new approach that leads to a novel al-
gorithm for extracting minor eigenvectors online has
been discussed. First, from the perspective of gen-
eralized eigen-decomposition the algorithm is pro-
posed. Theoretical analysis shows that this algorith-
m is globally convergent to the minor eigenvectors.
Simulations have been conducted for illustration of
the convergence and efficiency of our algorithms.
From both theoretical analysis and simulations, it
can be concluded that our algorithm is a good choice
in the practical applications.
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Appendix

Proof of Lemma1:

Because w(0) is not orthogonal to Vλn , we have
zn(0) 6= 0. If condition (13) is satisfied, it is easy to
see that ‖w1(k+1)‖6 ‖w1(k)‖ if ‖w1(k)‖2 > 1/λn
and ‖w(k + 1)‖ > ‖w1(k)‖ if ‖w1(k)‖2 < 1/λ1.
So there exists a time k1 such that ‖w1(k1)‖2 ∈
[1/λ1,1/λn].

If condition (13) is satisfied, for each j(1 6 j 6

n), we have

1+η

(
2

‖w j(k)‖2 −λ j−β1(k)
)
> 0 (26)

for k > 0. From (26), we have that

‖w1(k+1)‖>
[
1+2η

(
1/‖w1(k)‖2−λ1

)]
· ‖w(k)‖

and

‖w1(k+1)‖6
[
1+2η

(
1/‖w1(k)‖2−λn

)]
·‖w1(k)‖

for ‖w1(k)‖2 ∈ [c0,c1].
Next, we will show ‖w1(k + 1)‖2 ∈ [c0,c1] if

‖w1(k)‖2 ∈ [c0,c1].
Case 1, if 1/λn 6 ‖w1(k)‖2 6 c1, it is easy

to see that ‖w1(k + 1)‖2 6 ‖w1(k)‖2 6 c1 and
‖w1(k+1)‖2 >

[
1+2η

(
1/‖w1(k)‖2−λ1

)]2
/λn >

[1−2ηλ1]
2 /λn > c0.

Case 2, for ‖w1(k)‖2 ∈ [1/λ1,1/λn], we have
‖w1(k+1)‖2 6 [1+2η(1/‖w1(k)‖2 −λn)]

2/λn 6 c1

and ‖w1(k+1)‖2 >
[
1+2η

(
1/‖w1(k)‖2−λ1

)]2
/λ1 >

c0.

Case 3, when ‖w1(k)‖2 ∈ [c0,1/λ1], it follows
that ‖w1(k+1)‖2 > ‖w1(k)‖2 > c0 and

‖w1(k+1)‖2 6

[
1+2η

(
1

‖w1(k)‖2 −λn

)]2

· 1
λ1

6

[
1+2η

(
1
c0
−λn

)]2

· 1
λ1

6 c1.

The proof is completed.

Proof of Lemma 2:

Clearly, 0 < θ < 1. It follows (11) and (12) that
zn(k)> 0 for all k > 0 if zn(0)> 0, and zn(k)6 0 for
all k > 0 if zn(0) 6 0. Because w1(0) is not orthog-
onal to Vλn , zn(0) 6= 0. Without loss of generality,
we assume that zn(0)> 0, and thus, zn(k)> 0 for all
k > 0.
From (11∼12) and according to Lemma 1, it follows
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that [
ε j(k+1)
zn(k+1)

]2

=

[
1+η(2/‖w1(k)‖2−λ j−β1(k))
1+η(2/‖w1(k)‖2−λn−β1(k))

]2

·
[

ε j(k)
zn(k)

]2

=

[
1−

η(λ j−λn)

1+η(2/‖w1(k)‖2−λn−β1(k))

]2

·
[

ε j(k)
zn(k)

]2

6

[
1− η(λn−1−λn)

1+2η/c0

]2

·
[

ε j(k)
zn(k)

]2

6 θ
k−k1+1 ·

[
ε j(k1)

zn(k1)

]2

→ 0, ( j = 1, · · · ,n−1)

as k → +∞. This means that the angle between
w1(k) and φn approaches to zero.

It follows that

β1(k)−λn =
∑

n−1
j=1(λ j−λn)ε

2
j (k)

z2
n(k)+∑

n−1
j=1 ε2

j (k)

6
n−1

∑
j=1

(λ j−λn) ·θ k−k1 ·
[

ε j(k1)

zn(k1)

]2

for k > k1. The proof is completed.

Proof of Lemma 3:

From equation (11), it follows that

zn(k+1)− 1√
λn

=

(
zn(k)−

1√
λn

)
−η

(
β1(k)

−λn

)
zn(k)+2η

(
1

‖w1(k)‖2

−λn

)
zn(k)

for k > 0. Since

1
λn
− zn(k)2 =

(
1√
λn
− zn(k)

)(
1√
λn

+ zn(k)
)
,

for k > k1, we have that

zn(k+1)− 1√
λn

6

(
zn(k)−

1√
λn

)
·
(

1−

2ηλn

zn(k)

(
1√
λn

+ zn(k)
))

+ γ1,

where γ1 = |η (β1(k)−λn)zn(k)|.
By conditions in Lemma 1, we have that

Γ = 1− 2ηλn

zn(k)

(
1√
λn

+ zn(k)
)

> 1− 2η
√

λn√
c0

(1+∑
i6=n

ε(k)2

zn(k)2 )−2ηλn.

Combining above equality,

zn(k+1)− 1√
λn

6

(
zn(k)−

1√
λn

)(
1− 2η

√
λn√

c0

−2ηλn

)
+ γ1 + γ2,

where γ2 =−
2η
√

λn

c0
∑
i6=n

εi(k)2

zn(k)2

(
zn(k)−

1√
λn

)
.

Because ‖w(k)‖ is bounded above and below
for k > k1, there are constants c2,M1,M2 such that
|γ1| 6 ηc2|β1 − λn| 6 M1ηe−θ1(k−k1) and |γ2| 6
M2ηe−θ1(k−k1). For k > k1, by assumptions in Lem-
ma 3, it follows that∣∣∣∣zn(k+1)− 1√

λn

∣∣∣∣ 6 δ

∣∣∣∣zn(k)−
1√
λn

∣∣∣∣
+Mηe−θ1(k−k1),

where M is a constant and k > k1. Then, for k > k1,∣∣∣∣zn(k+1)− 1√
λn

∣∣∣∣ 6 δ
k−k1+1

∣∣∣∣zn(k1)−
1√
λn

∣∣∣∣
+ηM

k−k1

∑
r=0

(δeθ1)re−θ1(k−k1)

6 δ
k−k1+1|zn(k1)−

1√
λn
|

+(k− k1 +1) ·ηM

·max
{

δ
k−k1 ,e−θ1(k−k1)

}
6 (k− k1 +1) ·Π1 ·

[
e−θ2(k−k1+1)

+max
{

e−θ2(k−k1),e−θ1(k−k1)

}]
where Π1 is a constant. The proof is completed.

Published by Atlantis Press 
      Copyright: the authors 
                   999



J. Gao et al

Proof of Lemma 4:

Because w j(0) is not orthogonal to Vλn− j+1 , we
have zn− j+1(0) 6= 0. If condition (13) is satis-
fied, it is easy to see that ‖w j(k + 1)‖ 6 ‖w j(k)‖
if ‖w j(k)‖2 > 1/λn and ‖w j(k + 1)‖ > ‖w j(k)‖ if
‖w j(k)‖2 < 1/λ1. So there exists a time k1 such that
‖w j(k1)‖2 ∈ [1/λ1,1/λn].

If condition (13) is satisfied, for each i(16 i6 n)
when ‖w j(k)‖2 ∈ [c0,c1], we have

1+η
(
2/‖w j(k)‖2−λi−β j(k)

)
> 0. (27)

From (27), we have that

‖w j(k+1)‖ > Π(k+1)

>
[
1+2η

(
1/‖w1(k)‖2−λ1

)]
·Π(k)

and

‖w j(k+1)‖ 6
[
1+2η

(
1/‖w j(k)‖2−λn

)]
·‖w j(k)‖

for k > k1.
Next, we will show ‖w j(k + 1)‖2 ∈ [c0,c1] if
‖w j(k)‖2 ∈ [c0,c1]. Case 1, if 1/λn 6 ‖w j(k)‖2 6 c1,
it is easy to see that ‖w j(k+ 1)‖2 6 ‖w j(k)‖2 6 c1

and ‖w j(k+1)‖2 > Π(k+1)> [1−2ηλ1]
2

Π(k)>
[1−2ηλ1]

2 (1/λn−Λ(k)).
Case 2, for ‖w j(k)‖2 ∈ [1/λ1,1/λn], we have

‖w j(k + 1)‖2 6 [1+2η (λ1−λn)]
2 /λn 6 c1 and

‖w j(k + 1)‖2 > Π(k + 1) > [1+2η (λn−λ1)]
2 ·

Π(k).
Case 3, when ‖w j(k)‖2 ∈ [c0,1/λ1], it follows

that ‖w j(k + 1)‖2 > ‖w j(k)‖2 > c0 and ‖w(k +

1)‖2 6 [1−2ηλ1]
2 /λ1 6 c1.

If condition (13) is satisfied, by equation (19), it
follows that Λ(k+ 1) < Λ(k). So there exists time
k2, such that Λ(k) 6 c2 < 1/λ1 for k > k2. Without
loss of generality, assume k2 6 k1. Furthermore, it
follows that in Case 1 and Case 2, ‖w j(k+ 1)‖2 >
[1−2ηλ1]

2 (1/λ1− c2)> c0.
Since 1−η (λi +β j(k))> 1−2ηλ1 > 0 for k >

0. Let δ1 = 1− 2ηλn, it follows that |αi(k+ 1)| <
δ

k+1
1 |αi(0)| for k> 0 and n− j+1< i6 n. It follows

that limk→∞ αi(k) = 0 exponentially for n− j+1 <
i 6 n. The proof is completed.
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