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Abstract

A Pearson residual is defined as a residual between an observed value and expected one of each cell
in a contingency table, which measures the degree of statistical dependence of two attribute-value pairs
corresponding to the cell. This paper shows that this residual is decomposed into a linear sum of deter-
minants of 2×2 subtables, which means that the geometrical nature of the residuals can be viewed from
grasmmanian algebra.
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1. Introduction

Statistical independence between two attributes is a
very important concept in data mining and statis-
tics. The definition P(A,B) = P(A)P(B) show that
the joint probability of A and B is the product of
both probabilities. This gives several useful for-
mula, such as P(A|B) = P(A), P(B|A) = P(B). In a
data mining context, these formulae show that these
two attributes may not be correlated with each other.
Thus, when A or B is a classification target, the other
attribute may not play an important role in its classi-
fication.

Although independence is a very important con-
cept, it has not been fully and formally investigated
as a relation between two attributes.

In this paper, a statistical independence in a con-
tingency table is focused on from the viewpoint
of granular computing and linear algebra, which
is continuation of studies on contingency matrix

theory2,4,6,5. Tsumoto2,5 discusses that a contin-
gency table compares two attributes with respect to
information granularity and shows that statistifcal
independence in a contingency table is a special
form of linear depedence of two attributes. Espe-
cially, when the table is viewed as a matrix, the
above discussion shows that the rank of the matrix is
equal to 1.0. Tsumoto4 matrix algebra is a key point
of analysis of this table. A contingency table can be
viewed as a matrix and several operations and ideas
of matrix theory are introduced into the analysis of
the contingency table. On the other hand, in another
paper6, Tsumoto shows that the Pearson residual of
a contingency matrix is represented as a linear sum
of 2× 2 submatrices, whose number is equal to the
degree of freedom.

In this paper, we extend residual analysis to mul-
tidimensional cases. The results show that multidi-
mensional residuals are also represented as a linear
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sum of determinants of 2×2 submatrices, the num-
ber of which is equal to the degree of freedom in a
given contingency table. Furthermore, the sum in-
cludes several kinds of units for statistical indepen-
dence/dependence, such as total independence and
partial independence. This also suggests that 2× 2
submatrices in a multidimensional data cube can be
viewed as information granules for measuring statis-
tical dependence.

The paper is organized as follows: Section 2
discusses the characteristics of contingency tables.
Section 3 shows the conditions on statistical inde-
pendence for contingency tables. Section 4 gives the
results of residual analysis of multiway contingency
tables. Section 5 illustrates the nature of residuals of
multiway tables by using several samples. Section 6
shows that the number of the determinants of 2× 2
submatrices is exactly the same as the degree of free-
dom in a three-way contingency table. Finally, Sec-
tion 7 concludes this paper.

2. Multiway Contingency Table

Definition 1. Let R1,R2, · · · ,Rn denote n(∈ N)
multinominal attributes in an attribute space A
which have m1,m2, · · · ,mn values Let |R j = A ji | de-
note the set of data whose jth-attribute is equal
to A ji (ith-partition of j). A contingency table
T (R1,R2, · · · ,Rn) is a table, each of whose cells can
be defined as:

xi1i2···in = #{x ∈ |R1 = Ai1 |∧ |R2 = Ai2 | · · ·
∧ |Rn = Ain |},

with these marginal sums.
For example, in the two dimensional case, this

table is arranged into the form shown in Table 1,
where: |[R1 = A j]A| = ∑

m
i=1 x1i = x· j, |[R2 = Bi]A| =

∑
n
j=1 x ji = xi·, |[R1 = A j ∧ R2 = Bi]A| = xi j, |U | =

N = x·· (i = 1,2,3, · · · ,n and j = 1,2,3, · · · ,m).

Definition 2. A multiway contigency matrix
MR1,R2,··· ,Rn(N) is defined as: which is composed of

xi1i2···in = #{x ∈ |R1 = Ai1 |∧ |R2 = Ai2 | · · ·
∧ |Rn = Ain |},

where their marginal sums are not included as ele-
ments.

For simplicity, if we do not need to specify R1
and R2, we use M(m,n,N) as a contingency matrix
with m rows, n columns and N samples.

One of the important observations from granu-
lar computing is that a contingency table shows the
counting relations between two attributes with re-
spect to intersection of their supporting sets. When
two attributes have different numbers of equivalence
classes, the situation may be a little complicated.
But, in this case, due to knowledge about linear al-
gebra, we only have to consider an attribute which
has a smaller number of equivalence classes. and
the surplus number of equivalence classes of the at-
tributes with larger number of equivalnce classes can
be projected into the other partitions. In other words,
a m× n matrix or contingency table includes a pro-
jection from one attributes to the other one.

3. Statistical Independence in Multi-way
Contingency Tables

Let us consider a m×n contingency table shown in
Table 1. Statistical independence of R1 and R2 gives
the following formulae:

P([R1 = Ai,R2 = B j]) = P([R1 = Ai])P([R2 = B j])

(i = 1, · · · ,m, j = 1, · · · ,n).

According to the definition of the table,

xi j

N
=

∑
n
k=1 xik

N
× ∑

m
l=1 xl j

N
. (1)

Thus, we have obtained:

xi j =
∑

n
k=1 xik×∑

m
l=1 xl j

N
. (2)

Thus, for a fixed j,

xia j

xib j
=

∑
n
k=1 xiak

∑
n
k=1 xibk

In the same way, for a fixed i,

xi ja

xi jb
=

∑
m
l=1 xl ja

∑
m
l=1 xl jb
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Table 1: Contingency Table (m×n)
A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·

Sum x·1 x·2 · · · x·n x·· = N

Since this relation will hold for any j, the following
equation is obtained:

xia1

xib1
=

xia2

xib2
· · ·= xian

xibn
=

∑
n
k=1 xiak

∑
n
k=1 xibk

. (3)

Since the right hand side of the above equation will
be constant, thus all the ratios are constant. Thus,

Theorem 1. If two attributes in a contingency ta-
ble shown in Table 1 are statistical indepedent, the
following equations hold:

xia1

xib1
=

xia2

xib2
· · ·= xian

xibn
= const. (4)

for all rows: ia and ib (ia, ib = 1,2, · · · ,m).

3.1. Three-way Table

Let “•” denote as the sum over the row or column of
a contingency matrix. That is ,

xi• =
n

∑
j=1

xi j (5)

x• j =
m

∑
i=1

xi j, (6)

where (5) and (6) shows marginal column and row
sums. Then, it is easy to see that

x•• = N,

where N denotes the sample size.
Then, Equation (2) is reformulated as:

xi j

x••
=

xi•
x••
×

x• j

x••
(7)

That is,

xi j =
xi•× x• j

x••

Or
xi jx•• = xi•x• j

Thus, statistical independence can be viewed as
the specific relations between assignments of i, j and
“·”. By use of the above relation, Equation (4) can
be rewritten as:

xi1 j

xi2 j
=

xi1•
xi2•

,

where the right hand side gives the ratio of marginal
column sums.

Equation (7) can be extended into multivariate
cases. Let us consider a three attribute case.

Statistical independence with three attributes is
defined as:

xi jk

x•••
=

xi••
x•••
×

x• j•
x•••
× x••k

x•••
, (8)

Thus,
xi jkx2

••• = xi••x• j•x••k, (9)

which corresponds to:

P(A = a,B = b,C = c) =

P(A = a)P(B = b)P(C = c),
(10)

where A,B,C correspond to the names of attributes
for i, j,k, respectively.

In the statistical context, statistical independence
requires a hiearchical model. That is, statistical in-
dependence of three attributes requires that all the
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two pairs of three attributes should satisfy the equa-
tions of statistical independence. Thus, for Equation
(10), the following equations should satisfy:

P(A = a,B = b) = P(A = a)P(B = b),
P(B = b,C = c) = P(B = b)P(C = c), and
P(A = a,C = c) = P(A = a)P(C = c).

Thus,

xi j•x••• = xi••x• j• (11)
xi•kx••• = xi••x••k (12)
x• jkx••• = x• j•x••k (13)

From Equation (9) and Equation (11),

xi jkx••• = xi j•x••k,

Therefore,
xi jk

xi j•
=

x••k
x•••

(14)

In the same way, the following equations are ob-
tained:

xi jk

xi•k
=

x• j•
x•••

(15)

xi jk

x• jk
=

xi••
x•••

(16)

In summary, the following theorem is obtained.

Theorem 2. If a three-way contingency table satisfy
statistical independence, then the following three
equations should be satisfied:

xi jk

xi j•
=

x••k
x•••

xi jk

xi•k
=

x• j•
x•••

xi jk

x• jk
=

xi••
x•••

Thus, the equations corresponding to Theorem 1
are obtained as follows.

Corollary 3. If three attributes in a contingency ta-
ble shown in Table 1 are statistical indepedent, the

following equations hold:
xi jka

xi jkb

=
x••ka

x••kb

xi jak

xi jbk
=

x• ja•
x• jb•

xia jk

xib jk
=

xia••
xib••

for all i, j, and k.

3.2. Multi-way Table

The above discussion can be easily extedned into a
multi-way contingency table.

Theorem 4. If a m-way contingency table satisfy
statistical independence, then the following equa-
tion should be satisfied for any k-th attribute ik and
jk (k = 1,2, · · · ,n) where n is the number of at-
tributes. xi1i2···ik···in

xi1i2··· jk···in
=

x••···ik···•
x••··· jk···•

Also, the following equation should be satisfied for
any ik:

xi1i2···in× xn−1
••···•

= xi1•···•x•i2···•×·· ·× x••···ik···•×·· ·× x••···•in

Thus, a Pearson residual, a difference between an
observed value for each cell in a contingency table
and an expected value, is defined as:

σi1i2···in = xi1i2···in

− xi1•···•×·· ·× x••···ik···•×·· ·× x••···•in
xn−1
••···•

(17)

4. Information Granule for Contingency
Matrices

4.1. Residual of Contingency Matrices

Tsumoto and Hirano 3,6 discusses the meaning of
pearson residuals from the viewpoint of linear alge-
bra.
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From Equation (17), the residual is defined as:

σi j = xi j−
xi•× x• j

x••
.

And simple calculation leads to the following
theorem.

Theorem 5. The residual σi j of two-dimensional
contigency matrix is obtained as:

σi j =
1

x••

{
xi jx••− xi•× x• j

}
=

1
x••

{
xi j ∑

k 6=i
∑
l 6= j

xkl−

(
∑
l 6= j

xil

)(
∑
k 6=i

xk j

)}

=
1

x••
∑
k 6=i
l 6= j

(xi jxkl− xk jxil)

=
1

x••
∑
k 6=i
l 6= j

∆
i, j
k,l,

where ∆
i, j
k,l is the determinant of a 2× 2 submatrix

of the original contingency matrix with selection of
i and k rows and j and l columns. Also, the sum
takes over k = m and l = n. Equivalently, the above
formula can be represented as:

σi jx•• = ∑
k 6=i
l 6= j

∆
i, j
k,l,

where the sum takes over k = m andl = n.

Especially, for m = n = 2, the residual is equal to the
determinant of the original matrix.

σi jx•• = ∆
i, j
k,l,

where k 6= i and l 6= j. Thus, σ11x•• = ∆
1,1
2,2,

In the case of 3×3 tables, the following formulas

are obtained.

σ11 =
1
x··

(
∆

1,1
2,2 +∆

1,1
2,3 +∆

1,1
3,2 +∆

1,1
3,3

)
σ12 =

1
x··

(
∆

1,2
2,1 +∆

1,2
2,3 +∆

1,2
3,1 +∆

1,2
3,3

)
σ21 =

1
x··

(
∆

2,1
1,2 +∆

2,1
1,3 +∆

2,1
3,2 +∆

2,1
3,3

)
σ22 =

1
x··

(
∆

2,2
1,1 +∆

2,2
1,3 +∆

2,2
3,1 +∆

2,2
3,3

)

As shown in the above formulae, the number of the
subderminants in σi j is equal to (3−1)∗(3−1) = 4,
the degree of freedom of 3×3 contingency table.

Thus, a 2× 2 submatrix in a contingency table
can be viewed as a information granule for statis-
tical (in)dependence. Furthermore, the number of
granules is equal to the degree of freedom of the ta-
ble.

Can we generalize these results into statistical in-
dependence of multivariate cases ? This question is
answered in this paper as follows.

4.2. Information Granule for Three-way
Contingency Tables

The residual for xi jk is defined as:

σi jk = xi jk−
xi••× x• j•× x••k

x2
•••

. (18)

Here, we define “partial residuals” in which one
of three attributes are summarized (marginalized) as
follows:

σ• jk = x• jk−
x• j•× x••k

x•••
(19)

σi•k = xi•k−
xi••× x••k

x•••
(20)

σi j• = xi j•−
xi••× x• j•

x•••
(21)

Then, by using (19), the residual (18) is refor-
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mualted as:

σi jk = xi jk−
xi••× x• j•× x••k

x2
•••

= xi jk−
xi••
x•••

x• j•x••k
x•••

= xi jk−
xi••
x•••

(
x• jk−σ• jk

)
=

xi••
x•••

σ• jk + xi jk−
xi••
x•••

x• jk

=
xi••
x•••

σ• jk

+
1

x•••

(
xi jkx•••− xi••x• jk

)
(22)

Since σ• jk is equivalent to the residual of two-
dimensional contigency matrix, it can be represented
as a linear sum of 2×2 submatrices. Thus, the latter
part xi jkx•••− xi••x• jk should be examined. Let us
denote this part by σ i

jk.

σ
i
jk = xi jkx•••− xi••x• jk

= xi jk

(
xi••+∑

l 6=i
xl••

)

−xi••

(
xi jk + ∑

m6=i
xm jk

)
= xi jk ∑

l 6=i
xl••− xi•• ∑

m6=i
xm jk

= ∑
l 6=i

(
xi jkxl••− xi••xl jk

)
= ∑

l 6=i
m6= j or n6=k

(
xi jkxlmn− ximnxl jk

)
= ∑

l 6=i
n6=k

∆( j)ik
ln + ∑

l 6=i
m6= j

∆(k)i j
lm

+ ∑
l 6=i

m6= j
n6=k

(
xi jkxlmn− ximnxl jk

)
, (23)

where ∆( j)ik
ln denotes the determinant of 2× 2 ma-

trix in which i and l rows and k and n columns are
selected with m = j fixed and ∆(k)i j

lm denotes the de-
terminant of 2×2 matrix in which i and l rows and
j and m columns are selected with n = k fixed. On

the other hand, the last part is different from the for-
mer two sums. This sum is zero if the conditional
independence are satisfied, that is, if xi jk = xi••x• jk,
whose meaning is i and j are statistical indepen-
dence with k fixed. Thus, the following theorem is
obtained.

Theorem 6. The residual of three-dimensional con-
tingency table is decomposed as:

σi jk =
xi••
x•••

σ• jk +σ
i
jk

=
xi••
x•••

σ• jk

+
1

x•••

∑
l 6=i
n6=k

∆( j)ik
ln + ∑

l 6=i
m6= j

∆(k)i j
lm

+ ∑
l 6=i

m6= j
n6=k

(
xi jkxlmn− ximnxl jk

)
 . (24)

4.3. Information Granule for Multi-way
Contingency Table

The structure of Equation (24) suggests that the
residual can be defined in a recursive way.

Theorem 7. Let n be a number of attributes in a
contingency table ( i.e. n-way contingency table.
The residual of the cell(i1, i2, · · · , ın), σi1i2···in is de-
composed as follows.

σi1i2···in =
xi1•···•
x••···•

σ•i2···in +
1

x••···•
σ

i1
i2···in

=
xi1•···•
x••···•

σ•i2···in

+
1

x••···•
(xi1i2···inx••···•− xi1•••x•i2···in) ,

(25)

For example, in the case of a four-dimensional
contingency table, a residual σi1i2i3i4 is decomposed
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as:

σi1i2i3i4 =
xi1•••
x••••

σ•i2i3i4 +
1

x••••
σ

i1
i2i3i4

=
xi1•••
x••••

σ•i2i3i4

+
1

x••••
(xi1i2i3i4x••••− xi1•••x•i2i3i4) ,

where σ•i2i3i4 can be decomposed as shown in Equa-
tion (24):

σ•i2i3i4 =
x•i2••
x••••

σ••i3i4 +
1

x••••
σ

i2
•i3i4

=
x•i2••
x••••

σ••i3i4

+
1

x••••
(x•i2i3i4x••••− x•i2••x••i3i4) .

Then, σ
i2
•i3i4 is reformulated as shown in Equation

(23).

5. Examples

5.1. 2×2×2 Contingency Table

The residual of a cell (1,1,1) is decomposed as:

σ111 =
x1••
x•••

σ•11 +
1

x•••
(x111x•••− x1••x•11)

=
x1••
x•••

σ•11 +
1

x•••
σ

1
11

and

σ
1
11 = (x111x212− x211x112)

+ (x111x221− x211x121)

+ (x111x222− x211x112),

which consists of three components. Since the num-
ber of determinants of σ•11 is equal to 1 and that of
σ1

11 is equal to 3, the total number of the determi-
nants is equal to 4. In the case of conditional inde-
pendence xi jk = xi••x• jk, the last part of σ1

11 is equal
to 0, the total number of the derminants in the resid-
ual is equal to 3. It is notable that these numbers
on the degree of freedom are exactly the same as
those of the degree of freedom in contingency table

analysis 1. This result is not accidental, as shown in
Section 6.

The geometrical structure of σ1
11 can be de-

picted as Figure 1. The shadowed parts corre-
spond to x111x212−x211x112, x111x222−x211x112, and
x111x221−x211x121. Thus, these three parts give three
possible combinations of parallelograms which has
x111x211 as the fixed edge.

5.2. 3×2×3 Contingency Table

The residual of a cell (1,1,1) is decomposed as:

σ111 =
x1••
x•••

σ•11 +
1

x•••
(x111x•••− x1••x•11)

=
x1••
x•••

σ•11 +
1

x•••
σ

1
11

and

σ
1
11 = (x111x212− x211x112)

+(x111x213− x211x113)

+(x111x221− x211x121)

+(x111x222− x211x122)

+(x111x223− x211x123)

+(x111x231− x211x131)

+(x111x232− x211x132)

+(x111x233− x211x133)

which consists of eight components. The geometri-
cal structure of σ1

11 can be depicted as Figure 2. The
shadowed parts correspond to x111x212 − x211x112,
x111x213 − x211x113, x111x221 − x211x121, x111x222 −
x211x122, x111x223 − x211x123, x111x231 − x211x131,
x111x232 − x211x132, and x111x233 − x211x133. Thus,
these eight parts give eight possible combinations of
parallelograms which has x111x211 as the fixed edge.

5.3. 3×3×3 Contingency Table

The residual of a cell (1,1,1) is decomposed as:

σ111 =
x1••
x•••

σ•11 +
1

x•••
(x111x•••− x1••x•11)

=
x1••
x•••

σ•11 +
1

x•••
σ

1
11
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x111 x121

x211

x221

x112

x212 x222

x122

Figure 1: Geometrical Structure of 2×2×2 Contingency Table

and

σ1
11 = (x111x212− x211x112)

+(x111x213− x211x113)

+(x111x221− x211x121)

+(x111x222− x211x122)

+(x111x223− x211x123

+(x111x231− x211x131)

+(x111x232− x211x132)

+(x111x233− x211x133)

+(x111x312− x311x112)

+(x111x313− x311x113)

+(x111x321− x311x121)

+(x111x322− x311x122)

+(x111x323− x311x123)

+(x111x331− x311x131)

+(x111x332− x311x132)

+(x111x333− x311x133)

which consists of 16 components. The geometri-
cal structure of σ1

11 can be depicted as Figure 3.
In the same way as 2× 3× 3 table, these 16 parts
give all the combinations of parallelograms which
has x111x211 and x111x311 as the fixed edges.

6. Discussion

6.1. #Degreee of Freedom = #Information
Granules

In the above sections, we mentioned that the num-
ber of derminants of 2× 2 submatrices in a three-
way contingency table is equal to the degree of free-
dom of χ2 test statistic in contingency table analysis.
This section shows that it is not accidental.

Everitt 1 shows that the degree of freedom of χ2

test statistic is given as:

d. f . = rcl− (r−1)− (c−1)− (l−1)−1
= rcl− r− c− l +2 (26)

On the other hand, with the hypothesis of condi-
tional independence on (r−1) row probabilities and
column × layer probabilities (cl−1), the degree of
freedom is given as:

d. f . = rcl− (cl−1)− (r−1)−1
= rcl− cl− r+1 (27)

Let us go back to Equation 25 in Theorem 6 and
assume that indices i, j, and k correspond to row, col-
umn, and layer, respectively. The numbers of the
derminants are summarized into:
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x111 x121 x131

x211 x221 x231

x112
x122 x132

x212
x222

x232

x113 x123

x133

x213
x223 x233

Figure 2: Geometrical Structure of 2×3×3 Contingency Table

σ• jk (c−1)(l−1)
∆( j)ik

ln (r−1)(l−1)
∆(k)i j

lm (r−1)(c−1)
xi jkxlmn− ximnxl jk (r−1)(c−1)(l−1)

The total number of the determinants sum is:

sum = (c−1)(l−1)+(r−1)(l−1)
+(r−1)(c−1)+(r−1)(c−1)(l−1)

= rcl− r− c− l +2,

which is equal to Equation 26. Thus, the following
theorem is obtaied.

Theorem 8. The total number of derminants of
2× 2 submatrices in a three-way contingency table
is equal to the degree of freedom of χ2 test statistic
in contingency table analysis.

Furthermore, since the total number of the der-
minants of two-way contingency tables with c rows
and l columns is (c− 1)(l− 1), the difference be-
tween the number of the determinants of three-way
tables and that of two tables, δ is equal to:

δ = (c−1)(l−1)+(r−1)(l−1)
+(r−1)(c−1)+(r−1)(c−1)(l−1)
−(c−1)(l−1)

= rcl− cl− r+1,

which is equal to Equation 27. Thus,

Theorem 9. The total number of derminants of
2× 2 submatrices in a three-way contingency table
can be decomposed into the sum of the total num-
ber of derminants in a two-way contingency table
and that in a three-way contingency table with con-
ditional independence. It will be our future work to
generalize these results into multi-way contingency
tables, whose dimension is larger than 4.

6.2. Towards Applications

Since the determinants of 2× 2 subtables (subma-
trices) can be viewed as information granules, these
values measure the local nature of a given table. On
the other hand, a χ2-test statistic gives the global
nature of a given table. If we only need to evaluate
the global degree of statistical independence, a chi2-
test statistic is sufficient. However, when we want to
evalute the precise nature of a given table, or the lo-
cal degree of statistical independence, the values for
each subtable will play important roles in further in-
vestigation of the local relations between attributes.

In other words, information granules give local
natures of statistical independence and those behav-
ior is integrated into the global nature of a given ta-
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Figure 3: Geometrical Structure of 2×3×3 Contingency Table

ble: integration of local into global behavior can also
be viewed as a study on granular computing. Then,
do such a multi-way contingency table have inter-
mediate granules between the derminant of a 2× 2
subtables and a Pearson residual or χ2- test statistics
? This will be the next target of our research.

7. Conclusion

This paper focuses on statistical independence of
three variables from the viewpoint of linear alge-
bra and show that information granules of statisti-
cal independence of three or four variables are de-
composed into linear sum of determinants of 2× 2-
submatrices. The analysis also shows that the resid-
uals of a multiway contigency table can be defined
in a recursive way. For example, the residuals of
four-way tables are described as those of three-way
and two-way tables.

Then, we focus on this recursive nature in the
case of three-way contingency tables. The geomet-
ric characteristics of selected dertimants in a residual
xi jk show that the components of the sum give pos-
sible combinations of parallelograms which has one

fixed edge with xi jk as a vertex. Furthermore, The
total number of derminants of 2× 2 submatrices in
a three-way contingency table is equal to the degree
of freedom of χ2 test statistic in contingency table
analysis.

Thus, the derminants of 2× 2 matrices are prin-
cipal information granules to measure the degree of
statistical dependence in a given contingency table.

1. B.S. Everitt. The Analysis of Contingency Tables.
Chapman & Hall/CRC, 2nd edition, 1992.

2. Shusaku Tsumoto. Contingency matrix theory: Sta-
tistical dependence in a contingency table. Inf. Sci.,
179(11):1615–1627, 2009.

3. Shusaku Tsumoto and Shoji Hirano. Meaning of pear-
son residuals - linear algebra view -. In Proceedings
of IEEE GrC 2007. IEEE press, 2007.

4. Shusaku Tsumoto and Shoji Hirano. Contingency ma-
trix theory ii: Degree of dependence as granularity.
Fundam. Inform., 90(4):427–442, 2009.

5. Shusaku Tsumoto and Shoji Hirano. Dependency and
granularity indata. In Robert A. Meyers, editor, En-
cyclopedia of Complexity and Systems Science, pages
1864–1872. Springer, 2009.

6. Shusaku Tsumoto and Shoji Hirano. Statistical inde-
pendence and determinants in a contingency table -
interpretation of pearson residuals based on linear al-
gebra -. Fundam. Inform., 90(3):251–267, 2009.

10Published by Atlantis Press 
      Copyright: the authors 
                   1089

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine




