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Abstract 

Trajectory similarity measure is an important issue for analyzing the behavior of moving objects. In this paper, a 
similarity measure method for network constrained trajectories is proposed. It considers spatial and temporal 
features simultaneously in calculating spatio-temporal distance. The crossing points of network and semantic 
information of trajectory are used to extract the characteristic points for trajectory partition. Experiment results 
show that the storage space is decreased after trajectory partition and the similarity measure method is valid and 
efficient for trajectory clustering. 

Keywords: constrained trajectory, road network, spatio-temporal similarity measure, trajectory clustering. 

1. Introduction 

Recent advances in wireless communication, sensor 
network and location determination technologies, make 
it possible to gather continuous spatio-temporal data 

which represent positions and movements of moving 
objects. Numerous spatio-temporal data with location 
and time attributes are able to be acquired from GPS 
devices, RFID sensors, RADAR or satellites. 1 
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Generally, it is assumed that a moving object moves 
in the X-Y plane and the traversed path is a set of line 
segments in (x, y, t) space. These paths are defined as 
trajectories. According to the motion environment of  
the moving objects, there are two kinds of trajectories.2 
One is generated by the free moving objects, which are 
common in analysis of meteorology and animal 
behaviors. Objects move freely without any motion 
restrictions. The other is the constrained trajectories 
moving on the predefined spatial networks such as road 
segments. There are rich knowledge could be extracted 
from  trajectory data, such as clusters, sequence patterns, 
association rules, evolution trends, outliers, etc. 
Trajectory data mining is very useful in decision making. 
However, trajectory data have such characteristics as 
huge volume, high dimension, dynamic growth, domain 
constraints and spatio-temporal correlation. There are 
many challenging problems such as data storage, 
computing efficiency, high performance mining 
algorithms, et al.  

Trajectory similarity measure is an important 
procedure in trajectory mining for analyzing the 
behavior of moving objects. By identifying similar 
trajectories, various data mining techniques like 
clustering, classification can be applied to discover 
useful moving patterns. Trajectory similarity measure is 
originated from the similarity analysis of time series 
data and a lot of research works have been done. The 
majority of the research of trajectory similarity analysis 
is based on the assumption that objects can move freely 
without any motion restrictions. However, in many 
fields, e.g. intelligent transport system, most trajectories 
are constrained in the road network. 

It is a common view that similar trajectories may 
indicate a potential moving pattern. Trajectory 
similarity analysis is useful for many applications of 
intelligent transport systems. For example, mining 
moving pattern for traffic prediction, analyzing 
trajectory congestion for traffic navigation, etc. In these 
applications, efficient representation of trajectories and 
similarity measurement with spatio-temporal constraints 
satisfying are desired. However, raw position 
information in trajectories of moving objects can not be 
stored and maintained for a long time due to the huge 
volume or privacy reasons.1 In this paper, we focus on 
efficient spatio-temporal feature extraction and 
similarity analysis of network constrained trajectories. 
Meanwhile, semantics as stops3 is introduced and 

refined for trajectory partition, which has been proved 
to be useful for improving the similarity measure effect 
to some extent. 

The rest of the paper is organized as follows. In 
Section 2, related works are introduced and the research 
motivation of this paper is discussed. In Section 3, the 
method of reconstruction and partition of network 
constrained trajectories according to spatio-temporal 
feature and semantic information is detailed. Spatio-
temporal similarity measure method is introduced in 
Section 4. In section 5, trajectory pre-processing 
procedure and complexity are discussed. Section 6 
presents the experimental results.  Finally, in section 7, 
we conclude this paper. 

2. Related Work and Motivation 

Many methods for trajectory similarity measure have 
been developed such as Euclidean，Dynamic Time 
Warping (DTW) ， Longest Common Subsequence 
(LCSS)，Edit Distance on Real Sequence (EDR) and 
Edit distance with Real Penalty (ERP).4-7 As the raw 
data in the trajectory is recorded as (x, y, t) without 
considering the road network constraint, it is nature to 
introduce the classic Euclidean method. However, the 
Euclidean distance results in poor performance 
regarding the quality of the results and suffers from high 
computation cost dealing with 3-dimensional. The other 
proposed methods are inapplicable for network 
constrained trajectories because they only considered 
the shape-based similarity and did not fully explore the 
spatio-temporal characteristics between two trajectories. 
E.g. as we know that the distance of trajectories in road 
network depends on the connectivity of road segments, 
two trajectories in the road network may need a great 
cost to reach each other even though the above distances 
are short. 

Several similarity measure methods for network 
constrained trajectories have been presented also. Jung-
Im Won et al. introduced a similarity measure scheme 
that judges the degree of similarity by considering the 
total length of matched road segments.8 However, it 
only considers spatial similarity of trajectories. Hwang 
et al. presented a similarity measure method based on 
network distance,9,10 which measures spatial and 
temporal similarity in filtering phase and refinement 
phase separately, and a set of points need to be selected 
in advance. Other methods analyze spatial and temporal 
similarities with a weights selection,11,12 which splits the 
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spatio-temporal correlation of trajectories. Another 
typical trajectory clustering approach proposed by Lee13 
is focusing on the trajectory partition based on 
characteristic points, which inspired our research. 
However, the proposed method is a general trajectory 
method which is not optimized for road network 
constraint. Furthermore, they do not take account of 
temporal information during clustering. In fact, spatial 
and temporal similarity of trajectories should not be 
measured separately. For example, there are three 
moving objects A, B and C, and their corresponding 
trajectories TRA, TRB, TRC. When the object B is moving 
with A, the object C moves along the same path but 
possess a time lag to A, the trajectory TRA and TRB are 
considered to be closing in both spatial and temporal 
dimensions, we regard them as spatio-temporal 
neighbors. TRC shows its spatial similarity with TRA and 
TRB, however there is a time lag, so they are not 
adjacent in temporal dimension as well as in spatio-
temporal dimension. To measure the similarity of 
network constrained trajectories, spatial and temporal 
features should be considered simultaneously. 

3. Reconstruction and Partition of Trajectories 

Raw positions of moving objects acquired from mobile 
devices such as GPS are discrete, which can be 
expressed by the point P(x, y, t) in (x, y, t) space. Fig.1 
shows that it is easy to generate the trajectory of a 
moving object using linear interpolation or curve 
interpolation method based on its sample points. It is 
obvious that the motion of road network constrained 
trajectory is restricted by the linear road segments. 
These line segments connect from end to end to form a 
polyline in (x, y, t) space, their projections in the X-Y 
plane are the route of moving objects, which exactly 
overlap with road segments. 

Raw trajectory consists of all discrete location 
points gathered from mobile devices, it covers entire 
spatial, temporal and semantic features of a moving 
object. The location point where the behavior of a 
trajectory changes rapidly is defined as characteristic 
points(CP).13 Finding all the characteristic points of a 
trajectory is helpful to fully explore its spatio-temporal 
and semantic features. The purpose of trajectory 
reconstruction and partition is to extract all 
characteristic points and get rid of useless location data. 
It can reduce the storage usage and improve the 
efficiency for further similarity measurement.  

The exact spatial, temporal and semantic features 
aggregated to the trajectory are related to the application 
context. We partition network constrained trajectory 
based on two kinds of characteristic points: 
 Crossings which indicate the joint and split points 

of trajectory. 
 Stops and moves which describe the semantic 

information of trajectory for more meaningful 
understanding. 

3.1. Crossings as Characteristic Points 

Unlike the free moving trajectories, network constrained 
trajectories have more restrictions in spatial aspect. 
Therefore, trajectory partition lies more on road network 
rather than the speed and direction changes of moving 
objects. 

It is obvious that the network constrained 
trajectories always have spatial overlaps with the road 
segments, and possess a time period delay or 
intersection. Another observation is that the road 
network consists of line segments, on which the linear 
interpolation method is easy to be performed. We 
propose that to record the location data of moving 
objects when they across the crossing of the network 
and get rid of other raw sampling data, because there 
always be a joining and splitting around here. When the 
moving objects are moving under the road network 
constraints, the detail features of their movement 
seldom affect the analyzing results of trajectories. So, 
we can choose the crossing points as the characteristic 
points to partition the whole trajectory into sub-
trajectories. 

3.2. Stops as Characteristic Points 

Generally, raw location points of a trajectory have little 
or even no semantics, which makes it hard to extract 

 

Fig. 1.  Interpolation method to describe a trajectory 
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knowledge and understand moving pattern from the 
viewpoint of real-world applications. It is necessary to 
find a way to fill the gap between raw positions and 
trajectory semantics. 

Spaccapietra proposed a conceptual model3 of 
trajectories, which divides trajectories into two states 
called stops and moves. This model allows users to 
attach semantic data to specific parts of the trajectory. 
For example, in the applications of city traffic 
management, stops could be traffic lights, roundabouts, 
speed controllers, traffic jams, and so on. 

We treat move as a sub-trajectory which describes 
the object position change in a temporal interval, and 
regard stop as a part of a trajectory represents that an 
object is staying in the same position or a small area 
within a period, as shown in Fig. 2.  

It is important to note that moving object around 
crossings should not be considered as stops. We treat 
these crossings according to road network as 
surrounding characteristics of trajectories, while stops 
represent the semantic feature of trajectory itself. 

Fig. 2 shows how characteristic points have been 
chosen by the above methods. Both crossings and stops 
are reserved as CP to partition a trajectory. The 
advantage of this method is that it describes the spatial, 
temporal and semantic features integrally while reduces 
the dataset size. The following section introduces the 
similarity measure method which is based on the 
partitioned sub-trajectories in the following section. 

4. Spatio-temporal Similarity Measure Method 

Similar trajectories should be closing in both spatial and 
temporal dimensions. To define a distance between two 
trajectories, the commensurability of spatial and 
temporal measuring metric should be satisfied. The 
metric of similarity can be normalized to [0, 1], where 0 
represents two trajectories are irrelevant and 1 means 
they are the most similar. We propose to calculate the 
spatial similarity and temporal similarity first, and then 
transfer them into the same measuring metric to get the 
final spatio-temporal similarity. 

Trajectories could be regarded as datasets with 
continuous positions. We note that the effective use of 
Jaccard coefficient14 and extend Jaccard coefficient15 
for similarity measurement on sequence data. Based on 
the idea of Jaccard coefficient, we give the definition of 
similarity between trajectories as follow.  

Definition 1. The similarity of two trajectories is the 
ratio of the common part to the summation of the 
common and uncommon parts. 

( , )
( , )

( ) ( ) ( , )

c i j
i j

i j i j

L TR TR
Sim TR TR

L TR L TR L TR TR


 
    (1) 

Where, Lc(TRi, TRj) means the total length of the 
common part between trajectory TRi and TRj. We 
represent the spatial length of sub-trajectory tri with 
SL(tri), and TL(tri) as its lifespan in temporal dimension. 
Lc(TRi, TRj) can be calculated as Σ SL(tri) in spatial 
dimension and Σ TL(tri) in temporal dimension. L(TRi) 
represents the total length of trajectory TRi with SL(TRi) 
in spatial dimension and TL(TRi) in temporal dimension. 

For example, there are four trajectories in Fig. 3, 
each of them has several sub-trajectories. 

TR1 = {tr1, tr5, tr7, tr12, tr15} 
TR2 = {tr1, tr2, tr3, tr6, tr9, tr7, tr12} 
TR3 = {tr4, tr8, tr11, tr10, tr13, tr14} 
TR4 = {tr5, tr7, tr10, tr13, tr14, tr15} 
The similarity between TR1 and TR2 could be 

calculated as: 

 1 2

71 12

5 71 12 15 2 3 6 9

,
L tr L tr L tr

L tr L tr L tr L tr L tr L tr L tr L tr L tr
Sim TR TR

     
     
     

                
                
                

 

       


 

 

Fig. 2.  Trajectory partitioning, find stops in trajectory and 
keep them as characteristic points 
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Fig. 3.  Trajectory and sub-trajectory in road network 
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The proposed definition helps us to acquire a metric 
in both spatial and temporal dimension of trajectory for 
similarity measure. It seems that the similarity 
computation cost between two trajectories is very high. 
However, the dataset size of each trajectory is sharply 
reduced after trajectory partition and reconstruction.  

According to definition 1, the spatial similarity 
(SSim) is mainly affected by the common segments of 
trajectories. Obviously, when it covers whole trajectory, 
then SSim is 1, and if there is no any common segment 
between TRi and TRj, SSim is 0. Temporal similarity 
(TSim) follows the same definition and its value also 
ranges from 0 to 1. 

Most of the trajectories on road network are heavily 
overlapping with each other from the spatial view. 
Some research focus on the trajectory similarity 
measure only considering the spatial features in order to 
get shape-based similar trajectories.8,16 However, the 
temporal features of a trajectory represent the moving 
trend varying with time, only considering the spatial 
features of trajectories and ignoring the temporal feature 
has an obvious limitation in discovering the evolution 
trends of trajectories and other hidden spatio-temporal 
knowledge. We focus on finding similar trajectories 
with both high spatial similarity and temporal similarity, 
which can be defined as spatio-temporal neighbors.  

In Fig.4, trajectories in Group A possess spatial 
similarity. However, we can refine Group A into Group 
1 and Group 2 according to the temporal similarity. 
Obviously, trajectories in Group 1 are spatio-temporal 
similar, while they are irrelevant or dissimilar with 
trajectories in Group 2. 

Some research have the most similarity with our 
method11,12,17, however, due to different measure metrics 
in spatial and temporal dimensions, they all need spatio-
temporal weight parameters to acquire a combined 
similarity. The limitation is that weight parameters 
should be known in advance, as Wnet and Wtime shown in 
Eq. (2). 

         
( , ) ( , )

( , )

total i j net net i j

time time i j

D TR TR W D TR TR

W D TR TR

 

 
        (2) 

Acknowledge from previous research that 
Dnet(TRi,TRj) is the road network costs between two 
trajectories,5,16 Dtime (TRi, TRj) is the time costs to reach 
each other. Wnet and Wtime correspond to the weight of 
spatial and temporal features. The spatio-temporal 
similarity of trajectories may be calculated by using this 

method. This weight adjustments method is widely 
employed for similarity measure. However, it needs to 
predefine the coefficient of spatial and temporal 
features. 

In particular, we aim to find the trajectories which 
have the most spatio-temporal similarity. The spatial 
and temporal features have the same impact to 
trajectories. As a result of this, the coefficient of them is 
considered to be equivalent. The Eq. (2) can be 
simplified to:. 

    ( , ) ( , ) ( , )total i j net i j time i jD TR TR D TR TR D TR TR     (3) 

Here we present a simple analysis of function f(x, y) 
= x + y and function g(x, y)=x × y. When x and y are in 
[0, 1], g(x, y) ≤ f(x, y). So, the similarity measure 
method which satisfies g(x, y) must satisfy f(x, y). On 
the other hand, the character of g(x, y) is that when one 
of the value approaches 0, the other can not influence 
the final value. It minimizes the impact of any single 
feature to the spatio-temporal similarity of two 
trajectories. In this paper, we argue that the trajectories 
should be considered as spatio-temporal neighbors when 
the spatial and temporal similarities are both high. 
Above all, we define spatio-temporal similarity and 
spatio-temporal dissimilarity as follow: 
Definition 2. Spatio-temporal similarity of two 
trajectories is the product of spatial similarity and 
temporal similarity. 

( , ) ( , ) ( , )i j i j i jSTSim TR TR SSim TR TR TSim TR TR   (4) 

Similarity is a non-negative value range from 0 (no 
similarity) to 1 (complete similarity). The more similar 
two trajectories, the higher similarity they have. We 
have known that the spatial similarity and temporal 
similarity possess the same range of [0, 1], and the value 
of spatio-temporal similarity calculated with Eq. (4) 

 

Fig. 4.  Temporal feature of trajectories 
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makes the result still between [0, 1], where 0 means that 
there is no spatio-temporal relationship between two 
trajectories, 1 indicates that two trajectories are 
completely overlap. The proposed similarity measure 
method is based on two observations. First, any single-
feature similarity could not be considered as spatio-
temporal similarity. Second, trajectories are restricted 
by both spatial and temporal features, and the influence 
of them are equal to each other. For example, when the 
spatial similarity of two trajectories is 0, the two 
trajectories are far from each other in spatial, No matter 
how the temporal similarity is, the spatio-temporal 
similarity measure is still 0 which indicates that they are 
far away from each other in spatio-temporal view, vice 
versa. Fig. 4 shows that this method can distinguish 
Group 1 and Group 2 very well. The trajectories in each 
group are spatio-temporal similar to each other, while 
trajectories between Group 1 and Group 2 are dissimilar 
in spatio-temporal view. 

According to definition 2, we do not need to 
measure all the spatial and temporal similarity of the 
trajectories, and we mentioned that the trajectory dataset 
size involved in similarity computing is sharply reduced 
by trajectory partition and reconstruction, which makes 
the total time cost of trajectory similarity measure 
decreased. For example, when we calculate spatial 
similarity of two trajectories, it is unnecessary to 
calculate the temporal similarity if the spatial similarity 
value is 0. 

Dissimilarity is used to indicate the difference 
between two objects. Generally, we regard the term of 
distance as the synonyms of dissimilarity.15 In reality, 
similarity and dissimilarity are often interchangeable. 
The Jaccard distance, which measures dissimilarity 
between sample sets, is complementary to the Jaccard 
coefficient and is obtained by subtracting the Jaccard 
coefficient from 1. In this paper, we use Jaccard 
distance to indicate the spatio-temporal distance 
between trajectories. 
Definition 3. Spatio-temporal distance of two 
trajectories is expressed by its spatio-temporal 
dissimilarity: 

         ( , ) 1 ( , )i j i jSTDist TR TR STSim TR TR            (5) 

Where, STSim(TRi, TRj) represents spatio-temporal 
similarity between trajectories TRi and TRj. The value 
range of spatio-temporal distance between TRi and TRj 
is still [0, 1]. When STDist is 0, it means two trajectories 

are full overlapped in both spatial and temporal 
dimensions. When STDist is 1, it means trajectories are 
far away from each other. 

5. Trajectory Pre-processing 

Generally, raw position data collected by mobile 
devices can not be used directly for data mining and 
knowledge discovery, the procedure of trajectory pre-
processing is necessary, see in Fig.5. Firstly, trajectories 
are constructed based on the raw position data after 
linear interpolation and outlier filtering. Secondly, after 
matching with geographic road network, the network 
crossings and semantic stops are selected as 
characteristic points, and the trajectories are 
reconstructed. Finally, spatio-temporal similarity and 
distance are calculated with Jaccard coefficient by 
processing spatial and temporal features under a 
uniform metric. The spatio-temporal similarity and 
distance can be used as parameter for further data 
mining, e.g. clustering, classification, pattern 
recognition, etc.  

During trajectory reconstruction, all the raw position 
data are scanned once. The time complexity is O(n), 
where n is the number of raw position data. The 
efficiency of characteristic points selection is decided 

 

Fig. 5.  Trajectory pre-processing procedure 
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by the complexity of road network. With the 
contribution of trajectory reconstruction, there are m 
characteristic points selected for trajectory partition 
(m<<n), the storage space can be sharply reduced. 
Spatio-temporal similarity measurement is time-
consuming when deal with each pair of trajectories. 
However, with the benefit of the proposed trajectory 
partition and spatio-temporal similarity measuring 
methods, economy time performance can be gained in 
the experiment. Generally, the time complexity of query 
spatio-temporal similar trajectories could be O(m2). The 
time complexity could be improved to O(log m) with 
the help of trajectory indexing. 

6. Experiments 

Experiments are implemented on a Intel(R) Pentium(R) 
Dual CPU T2330 @1.80GHz PC with 3G Bytes of main 
memory running on Windows XP Professional equipped 
with Java 1.6 and Matlab 7.0. Road network data 
generator developed by Brinkhoff is used to get 
trajectories.18 Trajectory data are generated on the map 
of Oldenburg. The generator is modified to acquire 
trajectories with random stops (The time interval is 
[5ms-15ms]). 

Experiment I. Dataset size of the trajectories 
Five datasets are analyzed to test the dataset size of 

trajectories, which consists of 100, 1000, 2000, 5000 
and 10000 trajectories, respectively. After performing 
the trajectory partition, the trajectories are divided into 
sub-trajectories by characteristic points, and most of the 
raw location points on road segments are erased. 

We test the size of each dataset by exporting 
trajectory dataset into a file located in the secondary 
storage. The experimental results are shown in Table 1. 
Obviously, the reconstruction and partition of network 
constrained trajectories with characteristic points can 
sharply reduce the storage usage. In this experiment, we 
choose stops with a time interval larger than 10ms.  
Stops with time interval less than 10ms in a trajectory 
are ignored. 
 
 
 
 
 
 
 

Table 1. Secondary storage usage of trajectories (KB) 

Trajectories 100 1000 2000 5000 10000 

Raw  71 759 1529 3941 8126 

Partitioned 40 395 1102 1892 4431 

By using the modified Brinkhoff’s Generator, 
objects could be generated and move through various 
road network segments. When moving object travels on 
a short road segment, there will be seldom raw sampling 
position, while there will be more sampling position 
data across a long road segment. 

Another experiment is performed to show the 
secondary storage usage when various objects are 
generated and traveling along road segments randomly. 
The parameters in Generator are defined as follows: 5 
initial moving objects at release time, 7 new moving 
objects generated per micro-second, and run the 
Generator for 40ms. This experiment is performed 10 
times. 278 trajectories are generated in each Generator 
run with different count of raw positions, the average 
number of raw positions is 3929.5. In Fig.6, we can see 
that the average raw positions of partitioned trajectories 
are 2205.8. Obviously, partitioned trajectories save 
secondary storage space in different extent by ignoring 
some raw positions of given trajectory without losing 
the original information. 

Experiment II. Time cost of querying spatio-
temporal similar trajectories 

Addition-based Approach (AA) and Multiplication-
based Approach (MA)12 have the most similarity with 
our method. They conducted the experiment with 
Brinkhoff’s Generator and showed a better retrieval 
time for searching similar trajectories when compared to 
earlier researches. Our scheme was compared with them 
in the same Generator to test the efficiency of retrieving 

 

Fig. 6.  Comparison of storage usage between raw and 
partitioned trajectories 
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similar trajectories for any given query trajectory. 
The simulation result is shown in Fig. 7, which 

presents the time cost of a given similar query in various 
trajectory datasets. The proposed method works well 
when the count of trajectories is below 2000, and more 
efficiently when the number of trajectories is increased. 
The proposed method is more efficient, because the AA 
and MA algorithm measure temporal similarity with 
different time period as hours, days and weeks, which 
are suffered to more time cost for weight selection and 
calculation. The proposed method can reduce the 
calculation time cost significantly because it only 
calculate the similarity when its spatial similarity is not 
0. Another reason is that there is only a small count of 
partitioned sub-trajectories are calculated which has 
been proved in Experiment I. 

Experiment III. Applications of spatio-temporal 

similarity measure 
To find spatio-temporal patterns of trajectories and 

predict the moving trends of moving objects, we use a 
clustering method to gather trajectories together with 
higher spatio-temporal similarity.  

Trajectories in a cluster are represented as spatio-
temporal neighbors. Previous researches have shown 
their success in trajectory clustering8,13, however, we 
focus on network constrained trajectories and cluster 
trajectories by analyzing spatio-temporal similarity. We 
perform this experiment to prove that the proposed 
spatio-temporal similarity measure method is useful and 
efficient in data mining area as a pre-processing 
procedure. We transform spatio-temporal distance to 
Eps parameter in density-based clustering method 
DBSCAN19, and define a cluster should at least possess 
3 trajectories. 

First, 100 trajectories on Oldenburg map are 
generated, and the spatio-temporal distances of 
trajectories are calculated with the proposed method. 
However, trajectory partition is performed with and 
without stops separately. Then, we perform trajectory 
clustering with spatio-temporal distance. Experiment 
results are shown in Fig. 8 and Fig. 9. We find that 
spatio-temporal similarity analysis with trajectory 
semantics helps to discover more interest clusters. As 
shown in Fig. 8, we do not consider stops as CP during 
spatio-temporal similarity analysis. The result represents 
trajectories moving in the X-Y-T space (A) and the X-Y 
space (B) respectively. Among them, we can see that 
there are three spatio-temporally closing trajectory 

     

Fig. 8.  Trajectory clustering results with proposed spatio-temporal similarity, stops characteristic points are NOT considered during 
spatio-temporal similarity analysis. (A) is clusters showed in MATLAB, (B) shows clusters in road network map. 

 

Fig. 7.  Time cost of Similarity search method. 
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groups with their corresponding route projections on the 
X-Y plane in (A). Apparently, the three clustered 
trajectory groups have obvious similar spatio-temporal 
moving patterns. The experimental result shows that 
spatio-temporal similar trajectories can be retrieved 
effectively by transfer the spatio-temporal distance to a 
clustering parameter. 

When clustering trajectories with stops, see Fig. 9, 
we analyze trajectories with stops by the time interval 
larger than 10ms. Fig. 9(A) shows 5 clusters in 
MATLAB with obvious moving trend and pattern. 
Compared with Fig.8, although we perform analysis on 
the same dataset, the result is different: there are 3 
clusters in Fig. 8(B) while 5 clusters in Fig. 9(B). In 
Area A shown in Fig. 9(B), there is a new cluster 
deprived from cluster 1 in Fig. 8(B). And cluster 3 in 
Fig. 8(B) has been divided into two separate clusters at 
Area B in Fig. 9(B). From the semantic view, there 
should be stops between trajectories in cluster 2 and 
cluster 3 which indicate a significant time gap. 

The experiment shows that the proposed trajectory 
partition and similarity measure methods can be used as 
pre-processing procedure for trajectory clustering, 
spatio-temporal semantic analysis and other knowledge 
discovery tasks. 

7. Conclusions 

Although there are many research works performed on 
similarity analysis for road network constrained 
trajectories, most of them process trajectory with spatial 

and temporal features in different measuring metrics. In 
this paper, we fist reconstruct network constrained 
trajectories with spatial, temporal and semantic features 
and partition them into sub-trajectories. Then we 
calculate the spatio-temporal distance and analyze 
trajectory similarity through considering spatial and 
temporal dimensions simultaneously.  

Experimental evaluations show that the proposed 
methods are reasonable. The partition based on spatial, 
temporal and semantic features brings more explicit and 
meaningful understanding of moving pattern. It reduces 
storage usage and decreases time cost of retrieving 
spatial-temporal similar trajectories. Finally, the 
experiments have shown that the proposed similarity 
measure method could be an efficient pre-processing 
procedure for clustering and other knowledge discovery 
tasks. 
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Fig. 9.  Trajectory clustering results with proposed spatio-temporal similarity, stops characteristic points are considered during spatio-
temporal similarity analysis. (A) is clusters showed in MATLAB, (B) shows clusters in road network map. 
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