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Abstract

Based on the fully implicational idea, we investigate the interval-valued fuzzy reasoning with multi-
antecedent rules. First, we construct a class of interval-valued fuzzy implications by means of a type of
implications and a parameter on the unit interval, then use them to establish three kinds of fully implica-
tional reasoning methods for the interval-valued fuzzy reasoning with multi-antecedent rules which are
called triple I method, hierarchical triple I method and URC triple I method respectively. At the same
time, we analyze the Modus-Ponens (MP for short) and continuity properties of these methods and inves-
tigate the equivalence between the first method and the latter two methods. We also restrict our discussion
to Zadeh fuzzy set theory and obtain a series of corresponding results.

Keywords: Approximate reasoning; interval-valued fuzzy sets; interval-valued fuzzy implications; fully
implicational methods; Modus-Ponens property; fuzzy implications.

1. Introduction

The compositional rule of inference (CRI) proposed
by Zadeh [1] is one of the earliest and most impor-
tant inference scheme in fuzzy reasoning. By the
CRI, for a given fuzzy rule ”if u is A then v is B”
(briefly A⇒ B) and a fact ”u is A′”, the inferred out-
put B′ is obtained by the following

B′(v) = sup
u∈U

T (A′(u),R(A(u),B(v))), v ∈V (1)

where T is a t-norm, R is a fuzzy relation, and
A,A′,B and B′ are fuzzy sets on their respective do-

mains U and V . To improve the CRI, Wang [2] pro-
posed a new reasoning method called fully impli-
cational triple I (the abbreviation of triple implica-
tions) method (shortly, triple I method) only using
implications on [0,1]. This new method has been
extensively discussed later (see, e.g.[2–17]) and its
principle followed is as follows: for given α ∈ [0,1],
rule A⇒ B and fact A′, the inferred B′ should be the
smallest fuzzy subset of V satisfying

(A(u)→ B(v))→ (A′(u)→ B′(v)) > α (2)

for all u ∈ U and v ∈ V , where → denotes an im-
plication I on [0,1]. Inequality 2 indicates that the
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sustaining degree [2] of A⇒ B to A′⇒ B′ should be
greater than or equal to α . The above principle is
called ”the α−triple I principle”. When α = 1, then
we have ”the triple I principle”. In [6], we estab-
lished the following computing formula for B′ ac-
cording to the triple I principle:

B′(v) = sup
u∈U

T (T (α, I(A(u),B(v))),A′(u)), v ∈V

(3)
where I is an implication on [0,1] satisfying (P5) and
(P) and the mapping T is its residual (see Proposi-
tions 1 and 2 in this paper). Especially, if α = 1 and
the mapping T satisfies T (1,b) = b for any b∈ [0,1]
in (3), then we have

B′(v) = sup
u∈U

T (I(A(u),B(v)),A′(u)), v ∈V (4)

It is clear that (4) is identical to (1) when T is a t-
norm. From this point of view, we can say that the
triple I method improves the CRI.

Interval-valued fuzzy sets (IVFSs for short) [18,
19] are extensions of Zadeh’s fuzzy sets [20]. Ow-
ing to the effective and reasonable description to
the uncertainty information, the expression ability
of IVFSs is stronger than that of Zadeh’s fuzzy sets.
So, it is hopeful to improve the technology of ap-
proximate reasoning by using IVFSs. Türksen et al.
[19, 21, 22], Gorzałczany et al. [23–26], Bustince
[27] and Wu [28] et al. all studied the approximate
reasoning with IVFSs. The methods used by them
are based on CRI or similarity measures. Based on
fully implicational idea, Wang et al. [11, 29] also
studied the interval-valued fuzzy reasoning (briefly
IVFR). But the inference model differs from the or-
dinary one. Wang [12] handled IVFR by means of
the triple I method, but the employed interval-valued
fuzzy t-norms were only t-representable in the sense
of Deschrijver et al.[30]. The approach linked to
these t-norms is the simplest and most intuitive one.
As shown in [31], these t-norms reveal only a small
tip of the iceberg while much more remains hidden
beneath the surface. In the present paper, we will ap-
ply the fully implicational idea to the IVFR. At first,
motivated by the form of a class of interval-valued
fuzzy implications constructed by Deschrijver and
Kerre [32, 33], which possess more interesting and

applicable properties as shown in [31], we will con-
struct a class of interval-valued fuzzy implications
using a type of implications on [0,1] only satisfying
(P5) and (P) (see Proposition 1 in this paper), then
use them to establish the fully implicational methods
for the reasoning with multi-antecedent rules.

Recently, aiming at the reasoning with multi-
antecedent rules, Balasubramaniam [34] proposed a
novel modified scheme of classical CRI inferencing
called hierarchical CRI which has some advantages
over the classical one, and also showed that the hi-
erarchical CRI and the classical CRI are equivalent
under some conditions. Comds and Andrews [35]
presented a rule configuration called union rule con-
figuration (URC, for short) for the multi-antecedent
rule. The URC can eliminate the combinatorial ex-
plosion of rules as inputs are added to the system. As
shown in [35] and [34], the above hierarchical CRI
and URC have many advantages over the classical
ones. So, in the present paper, we will also apply the
fully implicational idea to the hierarchical and URC
methods, and propose hierarchical and URC full-
implicational methods. Moreover, the MP property
of these methods and the equivalence between the
classical and the two new full-implicational meth-
ods will be investigated. For the case of Zadeh fuzzy
sets, a series of corresponding results will be ob-
tained.

The outline of this paper is as follows. In the
next section, we briefly recall some preliminaries
and construct a class of interval-valued fuzzy impli-
cations. In Section 3, we establish the fully impli-
cational method for the IVFR with multi-antecedent
rules and investigate its MP and continuity proper-
ties. Sections 4 and 5 propose respectively the hier-
archical and URC full-implicational methods for the
IVFR with multi-antecedent rules and discuss their
MP continuity properties. The equivalence between
the classical full-implicational method and the hier-
archical and URC full-implicational methods is also
investigated. The works in Sections 3, 4, and 5 also
include the case of Zadeh fuzzy sets. The final sec-
tion is the conclusion.
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2. Interval-valued fuzzy implications

Firstly, to make this paper self-contained, we briefly
recall some of the concepts and results employed
in the rest of this paper. Then, a class of interval-
valued fuzzy implications are constructed by means
of a type of implications and a parameter on [0,1].

Definition 1. ([36–39]) An implication on [0,1] is
any [0,1]2 → [0,1] mapping I satisfying I(0,0) =
I(0,1) = I(1,1) = 1 and I(1,0) = 0. We also require
that I is nonincreasing in its first and nondecreasing
in its second component. The implication generated
by a t-norm T is defined as

IT (x,y) = sup{γ ∈ [0,1]|T (x,γ) 6 y}, x,y ∈ [0,1]
(5)

It follows from the definition above that I(0,a) =
1 and I(a,1) = 1 for all a ∈ [0,1].

Definition 2. Let T and I be two [0,1]2 → [0,1] map-
pings, T and I are said to be residual to each other,
if the following residuation condition holds for all
x,y,z ∈ [0,1],

T (x,y) 6 z if and only if x 6 I(y,z) (6)

Proposition 1. ([13, 40–42]) Let T be a left-
continuous t-norm on [0,1], then its residuum IT
(written by I for short) defined by (5) has the fol-
lowing properties:

(P1) I(y,z) = 1⇐⇒ y 6 z;
(P2) x 6 I(y,z)⇐⇒ y 6 I(x,z);
(P3) I(x, I(y,z)) = I(y, I(x,z));
(P4) I(1,z) = z;
(P5) I(x, inf

z∈Z
z) = inf

z∈Z
I(x,z);

(P6) I(sup
z∈Z

z,y) = inf
z∈Z

I(z,y),

where x,y,z ∈ [0,1] and Z is any nonempty subset of
[0,1].

Proposition 2. ([6]) If a mapping I : [0,1]2 → [0,1]
satisfies (P5) and

(P) {γ ∈ [0,1]|x 6 I(y,γ)} 6= /0 for all x,y∈ [0,1],
then the mapping T : [0,1]2 → [0,1] defined by

T (x,y) = inf{γ ∈ [0,1]|x 6 I(y,γ)}, x,y ∈ [0,1]
(7)

is residual to I, i.e., T and I satisfy the residuation
condition (6).

Interval-valued fuzzy sets, which were appar-
ently first studied by Sambuc [18], are the extensions
of Zadeh’s fuzzy sets [20] and their definition is as
follows.

Definition 3. An interval-valued fuzzy set (IVFS, for
short) on a universe U is a mapping A : U → LI ,
A(u) = [µA(u),νA(u)] ∈ LI for any u ∈ U , where
LI = {[x1,x2]|x1,x2 ∈ [0,1] and x1 6 x2}. The order
6LI on LI is defined by [x1,x2] 6LI [y1,y2]⇐⇒ x1 6
y1 and x2 6 y2. We also write [x1,x2] 6LI [y1,y2] as
[y1,y2] >LI [x1,x2]. We denote the set of all IVFSs
on U by IVFS(U).

The lattice (LI,6LI ) is a complete lattice [43]
and its smallest and greatest elements are denoted as
0LI = [0,0] and 1LI = [1,1], respectively. An IVFS A
can be seen as an L-fuzzy set in the sense of Goguen
[44] with respect to the lattice LI . The operators
sup and inf on LI are defined as follows, for any
nonempty subset Z of LI ,

sup{z|z ∈ Z}= [sup{z1|z ∈ Z},sup{z2|z ∈ Z}],
inf{z|z ∈ Z}= [inf{z1|z ∈ Z}, inf{z2|z ∈ Z}].

From now on, if x ∈ LI then the left end point of x
is denoted by x1 or Pr1x and the right end point by
x2 or Pr2x , i.e. x = [x1,x2] or x = [Pr1x,Pr2x] . If
x1 = x2, then [x1,x2] can also be written as x1 or x2
simply.

Cornelis, Deschrijver and Kerre [30, 33, 45] gen-
eralized the definitions of t-norms and implications
on [0,1] to LI as follows.

Definition 4. A triangular norm (briefly t-norm)
on LI (also called interval-valued fuzzy t-norm) is
any increasing, commutative, associative (LI)2 → LI

mapping T satisfying T (1LI ,x) = x for all x ∈ LI .

Definition 5. An implication on LI (also called
interval-valued fuzzy implication) is any (LI)2 → LI

mapping I which is nonincreasing in its first and
nondecreasing in its second component, and which
satisfies I (0LI ,0LI ) = I (0LI ,1LI ) = I (1LI ,1LI ) =
1LI and I (1LI ,0LI ) = 0LI . The implication gener-
ated by a t-norm T on LI is defined for all x,y ∈ LI

as

IT (x,y) = sup{γ ∈ LI|T (x,γ) 6LI y}
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We also write I (x,y) as x→ y in our discussion.

Definition 6. ([31]) Given a t-norm T on [0,1], the
(LI)2 → LI mapping T p

T defined by, for x,y in LI ,

T p
T (x,y) = [T (x1,y1),max{T (x1,y2),T (x2,y1)}]

is a t-norm on LI that is called the pessimistic t-norm
with representative T .

Deschrijver and Kerre constructed in [33, 46]
a class of R-implications on LI by means of the
residua generated by left-continuous t-norms on
[0,1], which is shown in [31] as a class of resid-
ual implications generated by the generalized pes-
simistic t-norms on LI (see [31]). Deschrijver et al.
[31] also pointed out that from the point of view of
induced properties the most interesting connectives
are the pessimistic t-norms together with their (op-
timistic) residual implications. This means that this
class of R-implications on LI will have good appli-
cation perspectives. So, we consider to employ this
class of implications in our work. In our study on
reasoning methods, however, we find that this gen-
erating condition is very strong, and as a result, some
common implications, such as Kleene-Dienes impli-
cation, Reichenbach implication, Yager implication
and so on, can not be used to establish the reasoning
formulas. So, in the present paper, we firstly gener-
alize Deschrijver and Kerre’s interval-valued fuzzy
implications to a new form by using the implications
on [0,1] only satisfying (P5) and (P), then, use them
to establish the computing formulas for fuzzy rea-
soning with multi-antecedent rules.

Theorem 3. Suppose that I is an implication on
[0,1] satisfying (P5) and (P), mapping T defined by
(7) is its residual, and t ∈ [0,1]. Then the mapping
II,t : (LI)2 → LI defined by

II,t(x,y) =[min{I(x1,y1), I(x2,y2)},
min{I(T (x2, t),y2), I(x1,y2)}] (8)

for all x,y ∈ LI , is an implication on LI .

Proof. Since T (0,a) = inf{c ∈ [0,1]|0 6 I(a,c)}=
0 for all a ∈ [0,1] and I is an implica-
tion on [0,1], it is very easy to verify that
II,t(0LI ,0LI ) = II,t(0LI ,1LI ) = II,t(1LI ,1LI ) = 1LI

and II,t(1LI ,0LI ) = 0LI hold. Formula (7) follows

that T is nondecreasing in its first component. So,
from the mixed monotonicity of the implication I,
we also easily verify that II,t is nonincreasing in its
first and nondecreasing in its second component.

Corollary 4. Under the same assumptions of The-
orem 3, if t = 0, then the implication defined by
(8) is just the optimistic implication on LI as one
of the pseudo-i-representable implication [46], for
x,y ∈ LI ,

I o
I (x,y) = [min{I(x1,y1), I(x2,y2)}, I(x1,y2)] (9)

Proof. It follows from I(0,0) = 1 that 0 ∈ {c ∈
[0,1]|a 6 I(0,c)}. So we have T (a,0) = 0 for any
a ∈ [0,1]. Again, I(0,b) = 1 (∀b ∈ [0,1]) for any
implication I on [0,1] in the sense of Definition 1.
Therefore, we can easily get (9) from (8) when t = 0.

We now generalize Definition 2 to the case of LI .

Definition 7. Let T and I be two (LI)2 → LI map-
pings, T and I are said to be residual to each other,
if the following residuation condition holds for all
x,y,z ∈ LI ,

T (x,y) 6LI z if and only if x 6LI I (y,z) (10)

Theorem 5. Let I be an implication on [0,1] satis-
fying (P5) and (P) and t ∈ [0,1] be fixed. We define
the the mapping T : (LI)2 → LI by

T (x,y) = inf{γ ∈ LI|x 6LI II,t(y,γ)}, x,y ∈ LI.
(11)

Then T can be expressed as follows, for any x,y ∈
LI:

T (x,y) =[T (x1,y1),max{T (x2,T (y2, t)),T (x1,y2),

T (x2,y1)}], (12)

and it is residual to II,t defined by (8), i.e., T and
II,t satisfy (10).
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Proof. Since implication I satisfies (P5) and (P),
Proposition 2 follows that the mapping T defined by
(7) is residual to I. For any x,y,γ ∈ LI , we have

x1 6 Pr1II,t(y,γ)
iff x1 6 min{I(y1,γ1), I(y2,γ2)}
iff x1 6 I(y1,γ1) and x1 6 I(y2,γ2)}
iff T (x1,y1) 6 γ1 and T (x1,y2) 6 γ2,

x2 6 Pr2II,t(y,γ)
iff x2 6 min{I(T (y2, t),γ2), I(y1,γ2)}
iff x2 6 I(T (y2, t),γ2) and x2 6 I(y1,γ2)}
iff T (x2,T (y2, t)) 6 γ2 and T (x2,y1) 6 γ2.

So we get the expression of T defined by (11) as
follows

T (x,y) = inf{γ ∈ LI|x 6LI II,t(y,γ)}
=[T (x1,y1),max{T (x2,T (y2, t)),

T (x1,y2),T (x2,y1)}].

Further, by the definition of order 6LI , Proposi-
tion 2 and formula (8), we have for any x,y,z ∈ LI

that

T (x,y) 6LI z

iff T (x1,y1) 6 z1 and max{T (x2,T (y2, t)),T (x1,y2),

T (x2,y1)}6 z2

iff x1 6 I(y1,z1),T (x2,T (y2, t)) 6 z2,T (x1,y2) 6 z2

and T (x2,y1) 6 z2

iff x1 6 I(y1,z1),x2 6 I(T (y2, t),z2),x1 6 I(y2,z2)

and x2 6 I(y1,z2)

iff x1 6 min{I(y1,z1), I(y2,z2)} and

x2 6 min{I(T (y2, t),z2), I(y1,z2)}
iff x 6LI II,t(y,z),

i.e., T is residual to II,t .

Remark 1. The mapping T given by (12) is not nec-
essarily a t-norm on LI . For instance, the Kleene-
Dienes implication defined by I(a,b) = (1− a)∨ b
satisfies (P5) and (P), and its residual mapping is as
follows:

T (a,b) =
{

0, if a+b 6 1
a, if a+b > 1

, (a,b ∈ [0,1]),

but the T given by (12) is not a t-norm on LI

because T (1,b) 6= b for all b ∈ (0,1) and hence
T (1LI ,y) 6= y for any y ∈ LI \{0LI ,1LI}.

Definition 8. An interval-valued fuzzy set A on a
nonempty set U is said to be a ”singleton” if there
exists an u0 ∈U such that

A(u) =
{

1LI , if u = u0
0LI , if u 6= u0

.

We say A attains normality at u0 ∈U . A Zadeh fuzzy
set A on the set U is said to be a ”singleton” if there
exists an u0 ∈U such that

A(u) =
{

1, if u = u0
0, if u 6= u0

.

3. Fully implicational reasoning method

A multi-antecedent rule of the form

If u is A and v is B, then w is C (13)

denoted by (A,B)⇒C for simplicity, is usually rep-
resented by a fuzzy relation R(u,v,w) :U×V×W →
LI as follows:

R(u,v,w) = I (T (A(u),B(v)),C(w)) (14)

where A,B and C are IVFSs on their respective do-
mains U, V and W , and I and T are respectively
implication and t-norm on LI . Given a multi-input
(A′,B′) ( A′ and B′ are IVFSs on U and V , respec-
tively) and α ∈ LI , according to the classical triple
I method, we can obtain the inferred output C′ as
shown in the following.

Theorem 6. (α-triple I reasoning method) Suppose
that the interval-valued fuzzy implication II,t de-
fined by (8) is used, where t ∈ [0,1] and implica-
tion I on [0,1] satisfies (P5) and (P). Then for the
given rule (13), input (A′,B′) and any arbitrarily
fixed α ∈ LI , the output C′ can be expressed as fol-
lows:

C′(w) = sup
u∈U,v∈V

T (T (α,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v))),w ∈W (15)
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where T is the mapping residual to II,t .

Proof. According to the triple I principle of fuzzy
reasoning, the output C′ should be the smallest IVFS
on W satisfying the following inequality for any
w ∈W :

II,t(II,t(T (A(u),B(v)),C(w)),II,t(T (A′(u),

B′(v)),C′(w))) >LI α, u ∈U,v ∈V (16)

Since implication I satisfies (P5) and (P), II,t
satisfies residuation condition (10). So (16) is equiv-
alent to the following:

T (T (α,II,t(T (A(u),B(v)),C(w))),T (A′(u),

B′(v))) 6LI C′(w).

Hence, the smallest IVFS on W satisfying (16) is the
C′ defined by (15).

Remark 2. For the given rule (A,B) ⇒ C and the
input (A′,B′), according to the triple I principle of
fuzzy reasoning [13], the fact that (A′,B′) implies
the output C′ should be considered and should also
be fully sustained by the major premise (A,B)⇒C,
i.e.,

(T (A(u),B(v))→C(w))→ (T (A′(u),B′(v))→
C′(w))

should take its maximum for all u∈U,v∈V,w∈W ,
where → denotes an implication I on LI . For a
given α ∈ LI , the α-triple principle means that the
major premise (A,B) ⇒ C should sustain the new
formed rule (A′,B′)⇒C′ on the α-level, i.e., the fol-
lowing inequality holds for all u ∈U,v ∈V,w ∈W :

(T (A(u),B(v))→C(w))→ (T (A′(u),B′(v))→
C′(w)) >LI α.

Corollary 7. If the A,A′,B,B′ and C are all Zadeh
fuzzy sets on their respective domains U, V and W,
the employed implication I on [0,1] satisfies (P5)

and (P), then the output C′ can be obtained in a sim-
ilar way as in Theorem 6:

C′(w) = sup
u∈U,v∈V

T (T (α, I(T (A(u),B(v)),C(w))),

T (A′(u),B′(v))), w ∈W (17)

where α ∈ [0,1] is any arbitrarily fixed and the map-
ping T is residual to I.

Corollary 8. (Triple I reasoning method) Under the
same conditions as Theorem 6, suppose that impli-
cation I also satisfies (P1) and (P4), and α = 1LI ,
then for given rule (13) and input (A′,B′), the output
C′ can be expressed as follows:

C′(w) = sup
u∈U,v∈V

T (II,t(T (A(u),B(v)),C(w)),

T (A′(u),B′(v))), w ∈W (18)

where T is the mapping residual to II,t .

Proof. From the proof of Theorem 5, we know the
mapping T residual to II,t is determined by (12),
in which the mapping T on [0,1] is residual to the
implication I. So T (1,b) = b holds for all b ∈ [0,1]
since I satisfies (P1) (see [23]). (P4) follows that for
any a,b∈ [0,1], a = I(1,a) 6 I(b,a). Further, we get
T (a,b) 6 a from the residuation condition. Thus, by
(12), we have, for any y ∈ LLI ,

T (1LI ,y) =[T (1,y1),max{T (1,T (y2, t)),T (1,y2),

T (1,y1)}] = [y1,max{T (y2, t),y2,y1}]
=[y1,y2] = y.

Therefore, we can obtain (18) by taking α = 1LI in
(15).

Modus Ponens, i.e., B follows from A ⇒ B and
A, is the most fundamental deduction rule in logic.
So, for the reasoning above, it is natural to require
that the output C′ should return to C if (A′,B′) is just
(A,B). If a reasoning method has this property, we
say that it has MP property. Now, We discuss the
MP property of triple I reasoning method.

Theorem 9. If the implication I on [0,1] satisfies
(P1),(P4),(P5) and (P), then the triple I method
given by (18) has MP property for normal inputs,
i.e., A′ = A and B′ = B imply C′ = C if A and B are
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normal, i.e., there exist u0 ∈U and v0 ∈V such that
A(u0) = B(v0) = 1LI .

Proof. (P1) follows that the mapping T residual to
I satisfies T (1,b) = b for all b ∈ [0,1]. From the
proof of Corollary 8, we know that I(a,b) > b and
T (a,b) 6 a for all a,b ∈ [0,1] since I satisfies (P4).
Furthermore, (P4) follows that T (b,1) = inf{c ∈
[0,1]|b 6 I(1,c)}= inf{c ∈ [0,1]|b 6 c}= b for any
b ∈ [0,1]. So, according to (12) and (8) we get for
any x,y ∈ LI ,

T (x,1LI ) =[T (x1,1),max{T (x2,T (1, t)),T (x1,1),

T (x2,1)}] = [x1,max{T (x2, t),x1,x2}]
=[x1,x2] = x,II,t(1LI ,y) = [min{I(1,y1),

I(1,y2)},min{I(T (1, t),y2), I(1,y2)}]
=[y1,min{I(t,y2),y2}] = [y1,y2] = y

Formula (11) follows that the mapping T is non-
decreasing in its first component. From the nonin-
creasing property of II,t with respect to its first com-
ponent, it follows that {γ ∈ LI|x 6LI II,t(z,γ)} ⊆
{γ ∈ LI|x 6LI II,t(y,γ)} for any x,y,z∈ LI and y 6LI

z. Hence, for y 6LI z we have T (x,y) 6LI T (x,z)
for any x ∈ LI . The above description means that T
is nondecreasing in its two components.

Since A and B are normal, there exist u0 ∈U and
v0 ∈V such that A(u0) = B(v0) = 1LI . Taking A′ = A
and B′ = B in (18), we have, for any w ∈W ,

C′(w) = sup
u∈U,v∈V

T (II,t(T (A(u),B(v)),C(w)),

T (A(u),B(v))) > T (II,t(T (A(u0),B(v0)),

C(w)),T (A(u0),B(v0)))

=T (II,t(1LI ,C(w)),1LI ) = C(w).

Again, by Theorem 5, (P5) and (P) follows that
the residuation condition (10) holds. This implies
T (II,t(x,y),x) 6LI y for any x,y ∈ LI . So we get
C′(w) 6LI sup

u∈U,v∈V
C(w) = C(w) for all w ∈W .

Summarizing the above, we have C′ =C if A′ = A
and B′ = B.

In practical applications, we usually use the fol-
lowing distance between two intervals a = [a1,a2]
and b = [b1,b2]:

d(a,b) = |a1−b1|+ |a2−b2|.

The uniform metric is commonly used due to its sim-
plicity in computation. So in the sequel, we choose
the following uniform metric dU between two IVFSs
A1 and A2 on a universe W :

dU(A1,A2) = sup
w∈W

d(A1(w),A2(w)) = sup
w∈W

(|µA1(w)

−µA2(w)|+ |νA1(w)−νA2(w)|).

Because most of the practical problems only in-
volve finite elements, and computers can only store
finite numbers, in the following discussion in this
section we always assume that universes U , V and
W are finite.

The following theorem will show that the method
(15) is continuous w.r.t. the parameter α ∈ LI , if T
in (8) is continuous in its first argument.

Theorem 10. Suppose the conditions in Theorem 6
are satisfied. If T in (8) is continuous in the first ar-
gument, then the ouput (15) is continuous w.r.t. the
parameter α in the metric dU .

Proof. Denote C′ in(15) as C′
α . We will prove that

for any α∗ ∈ LI , lim
α→α∗

dU(C′
α ,C′

α∗) = 0.

First we prove that if T is continuous in its first
argument, then T is also continuous in its first ar-
gument. We only need to prove that for a,a∗,b ∈ LI ,
lim

a→a∗
d(T (a,b),T (a∗,b)) = 0.

When a → a∗, we have d(a,a∗) = |a1 −
a∗1| + |a2 − a∗2| → 0. So a1 → a∗1 and a2 → a∗2.
Since T is continuous in its first argument, we
have T (a1,b1) → T (a∗1,b1), T (a2,T (b2, t)) →
T (a∗2,T (b2, t)), T (a1,b2) → T (a∗1,b2) and
T (a2,b1)→ T (a∗2,b1). So

max{T (a2,T (b2, t)),T (a1,b2),T (a2,b1)}
→max{T (a∗2,T (b2, t)),T (a∗1,b2),T (a∗2,b1)}.

Therefore,

|T (a1,b1)−T (a∗1,b1)|+ |max{T (a2,T (b2, t)),

T (a1,b2),T (a2,b1)}−max{T (a∗2,T (b2, t)),T (a∗1,b2),

T (a∗2,b1)}| → 0.

That is, lim
a→a∗

d(T (a,b),T (a∗,b)) = 0. So T is con-

tinuous in its first argument.
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For all u ∈U,v ∈V and w ∈W , we have

lim
α→α∗

T (T (α,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v)))

=T ( lim
α→α∗

T (α,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v)))

=T (T ( lim
α→α∗

α,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v)))

=T (T (α∗,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v))).

So we get

lim
α→α∗

d(T (T (α,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v))),T (T (α∗,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v)))) = 0.

Since U,V and W contain finite elements, we
have

lim
α→α∗

dU(C′
α ,C′

α∗)

= lim
α→α∗

sup
w∈W

d(C′
α(w),C′

α∗(w))

= lim
α→α∗

sup
w∈W

d( sup
u∈U,v∈V

T (T (α,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v))),

= sup
u∈U,v∈V

T (T (α∗,II,t(T (A(u),B(v)),C(w))),

T (A′(u),B′(v))))

6 lim
α→α∗

sup
w∈W,u∈U,v∈V

d(T (T (α,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v))),T (T (α∗,II,t(T (A(u),

B(v)),C(w))),T (A′(u),B′(v)))))

= sup
w∈W,u∈U,v∈V

lim
α→α∗

d(T (T (α,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v))),T (T (α∗,II,t(T (A(u),

B(v)),C(w))),T (A′(u),B′(v)))))

= sup
w∈W,u∈U,v∈V

0 = 0.

Similarly to Theorem 10, we can prove the fol-
lowing theorem.

Theorem 11. Suppose the conditions in Theorem 6
are satisfied. If T in (8) is continuous, then the out-
put (15) is continuous w.r.t. the inputs A′ and B′ in
the metric dU .

Example 1. Suppose U = {u1,u2,u3}, V =
{v1,v2,v3,v4}, W = {w1,w2,w3}, α = [0.7,0.8],
β = [0.8,0.9],

A =
[0.3,0.4]

u1
+

[0.9,1]
u2

+
[0.7,0.8]

u3
,

B =
[0.1,0.2]

v1
+

[0.6,0.7]
v2

+
[0.9,1]

v3
+

[0.5,0.6]
v4

,

C =
[0.6,0.7]

w1
+

[0.8,0.9]
w2

+
[0.1,0.2]

w3
,

A′ =
[0.4,0.5]

u1
+

[0.8,1]
u2

+
[0.8,0.9]

u3
,

B′ =
[0.2,0.3]

v1
+

[0.5,0.7]
v2

+
[0.8,0.9]

v3
+

[0.6,0.8]
v4

.

For given rule (13) we calculate C′ using fully
implicational reasoning method (15).

Denote T (T (α,II,t(T (A(u),B(v)),C(w))),
T (A′(u),B′(v))) as f (u,v,w).

f (u1,v1,w1)

=T (T ([0.7,0.8],II,t(T ([0.3,0.4], [0.1,0.2]),

[0.6,0.7])),T ([0.4,0.5], [0.2,0.3]))

=T (T ([0.7,0.8],II,t([0,0], [0.6,0.7])), [0,0])

=T (T ([0.7,0.8], [1,1]), [0,0])

=T ([0.7,0.8], [0,0])

=[0,0].

In the same way, we get f (u1,v2,w1) = [0,0.4],
f (u1,v3,w1) = [0.4,0.5], f (u1,v4,w1) = [0,0.5],
f (u2,v1,w1) = [0,0], f (u2,v2,w1) = [0.5,0.7],
f (u2,v3,w1) = [0.6,0.7], f (u2,v4,w1) = [0.6,0.7],
f (u3,v1,w1) = [0,0], f (u3,v2,w1) = [0.5,0.7],
f (u3,v3,w1) = [0.6,0.7], f (u3,v4,w1) = [0.6,0.7].
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So we have

C′(w1)

=sup{ f (u1,v1,w1), f (u1,v2,w1), f (u1,v3,w1),

f (u1,v4,w1), f (u2,v1,w1), f (u2,v2,w1),

f (u2,v3,w1), f (u2,v4,w1), f (u3,v1,w1),

f (u3,v2,w1), f (u3,v3,w1), f (u3,v4,w1)}
=sup{[0,0], [0,0.4], [0.4,0.5], [0,0.5], [0,0], [0.5,0.7],

[0.6,0.7], [0.6,0.7], [0,0], [0.5,0.7], [0.6,0.7],

[0.6,0.7]}= [0.6,0.7].

Similarly, we get C′(w2) = [0.7,0.8], C′(w3) =
[0,0.5]. Therefore,

C′ =
[0.6,0.7]

w1
+

[0.7,0.8]
w2

+
[0,0.5]

w3
.

4. Hierarchical full-implicational reasoning
method

Given a fuzzy rule (A,B)⇒C and an input (A′,B′),
where A,A′,B,B′ and C are IVFSs on their respective
domains U, V and W , we now propose hierarchical
full-implicational reasoning method as follows:

Step 1) Consider if-then rule B ⇒ C, then for
a given β ∈ LI and the given input B′, by using the
classical β−triple I method we get the output C1:

C1(w) = sup
v∈V

T (T (β ,II,t(B(v),C(w))),B′(v)),

w ∈W (19)

Step 2) Consider if-then rule A ⇒C1, then for
a given α ∈ LI and the given input A′, by using
α−triple I method we get the output C′ as follows:

C′(w) = sup
u∈U

T (T (α,II,t(A(u),C1(w))),A′(u))

= sup
u∈U

T (T (α,II,t(A(u),sup
v∈V

T (T (β ,

II,t(B(v),C(w))),B′(v)))),A′(u)),w ∈W
(20)

where the implication II,t on LI is determined
by (8) and T is its residual. We also call the

reasoning method determined by (20) hierarchical
(α,β )−triple I method.

Remark 3. In the above hierarchical (α,β )-triple I
method (20), the α is the sustaining degree [13] of
B ⇒ C to B′ ⇒ C1 and the β is the one of A ⇒ C1
to A′⇒C′, where the definition of sustaining degree
of E → F to E ′→ F ′ is as follows:

sust(E → F,E ′→ F ′) = inf{(E(u)→ F(v))

→ (E ′(u)→ F ′(v)) | u ∈U,v ∈V},

where E and F are IVFSs on their respective do-
mains U and V . The meaning of α and β in Section
5 is the same as above.

Especially, if the employed implication I in (8)
also satisfies (P1) and (P4), and α = β = 1LI in (20),
then by T (1LI ,y) = y from the proof of Corollary 8
we have

C′(w) = sup
u∈U

T (II,t(A(u),sup
v∈V

T (II,t(B(v),C(w)),

B′(v))),A′(u)),w ∈W (21)

We call the method determined by (21) hierarchical
triple I method.

The following theorem shows that the hierarchi-
cal triple I method has MP property.

Theorem 12. If the implication I on [0,1] satis-
fies (P1),(P4),(P5) and (P), then the triple I method
given by (21) has MP property for normal inputs,
i.e., A′ = A and B′ = B imply C′ = C if A and B are
normal.

Proof. From the proof of Theorem 9 we
know that T (x,1LI ) = x,II,t(1LI ,y) = y and
T (II,t(x,y),x) 6LI y hold for all x,y ∈ LI , and
the mapping T is nondecreasing in its two compo-
nents. Since A and B are normal, there exist u0 ∈U
and v0 ∈ V such that A(u0) = B(v0) = 1LI . Taking
A′ = A and B′ = B in (21), we have for any w ∈W ,

C′(w) = sup
u∈U

T (II,t(A(u),sup
v∈V

T (II,t(B(v),C(w)),

B(v))),A(u))

>LI T (II,t(A(u0),T (II,t(B(v0),C(w)),B(v0))),

A(u0)) = C(w),
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C′(w) = sup
u∈U

T (II,t(A(u),sup
v∈V

T (II,t(B(v),C(w)),

B(v))),A(u))

6LI sup
v∈V

T (II,t(B(v),C(w)),B(v))

6LIC(w).

So we get C′(w) = C(w) for all w ∈W , i.e., we ob-
tain that C′ = C if A′ = A and B′ = B.

Similarly to Theorem 10 and Theorem 11, we
can prove the following two theorems.

Theorem 13. Suppose the conditions in Theorem 3
are satisfied and suppose U,V and W all contain fi-
nite elements. If T in (8) is continuous and I in (8) is
continuous in the second argument, then the output
(20) is continuous w.r.t. the parameters α and β in
the metric dU .

Theorem 14. Under the same conditions as in Theo-
rem 13, the output (20) is continuous w.r.t. the inputs
A′ and B′ in the metric dU .

If an implication I on [0,1] satisfies (P5) and (P),
and its residual mapping T determined by (7) is as-
sociative and distributive over the operation max,
then it is easy to verify that the mapping T given by
(12), i.e. (11), is also associative. Since the T and
II,t defined by (8) are residual to each other and LI

is a complete lattice, the associativity of T is equiv-
alent to the following law of importation:

II,t(T (x,y),z) = II,t(x,II,t(y,z)), x,y,z ∈ LI

(22)
Now, we investigate the equivalence between the

classical α−triple I method (15) and the hierarchical
(α,β )−triple I method (20).

Theorem 15. Assume that the inputs A′ and B′ are
”singleton” IVFSs on their respective domains U
and V , then (15) and (20) are equivalent when
the implication I on [0,1] satisfies (P1),(P4), (P5)
and (P), its residual mapping T determined by (7)
is associative and distributive over max, and β =
1LI ,α ∈ LI .

Proof. Assume that the ”singleton” IVFSs A′ and
B′ attain normality at points u0 ∈U and v0 ∈ V , re-
spectively. From the proof of Theorem 9 we know

that T is nondecreasing in its two components, and
T (y,1LI ) = T (1LI ,y) = y and II,t(1LI ,y) = y hold
for all y ∈ LI under the assumed conditions. It fol-
lows from (7) that T (0,a) = T (a,0) = 0 for any
a ∈ [0,1] since I(0,a) = 1 holds. Thus, by an easy
calculation we can obtain from (12) that T (x,0LI ) =
T (0LI ,x) = 0LI for all x ∈ LI . Using the above con-
ditions, we get, for any w ∈W ,

(15) =C′(w)

= sup
u∈U,v∈V

T (T (α,II,t(T (A(u),B(v)),

C(w))),T (A′(u),B′(v)))

=T (T (α,II,t(T (A(u0),B(v0)),C(w))),

T (A′(u0),B′(v0)))

=T (T (α,II,t(T (A(u0),B(v0)),C(w))),

T (1LI ,1LI )))

=T (α,II,t(T (A(u0),B(v0)),C(w))), (23)

(20) =C′(w)

= sup
u∈U

T (T (α,II,t(A(u),sup
v∈V

T (T (β ,

II,t(B(v),C(w))),B′(v)))),A′(u))

=T (T (α,II,t(A(u0),T (T (1LI ,

II,t(B(v0),C(w))),B′(v0)))),A′(u0))

=T (α,II,t(A(u0),II,t(B(v0),C(w)))) (24)

Since II,t and T satisfy the law of importation
(22) under the assumed conditions, (23)=(24), i.e.,
(15) and (20) are equivalent.

It is clear that the conclusion in Theorem 13
is certainly true for the residuum I of any left-
continuous t-norm on [0,1].

If we restrict our discussion to the ordinary fuzzy
sets, then in a similar way as in the above, we can get
the hierarchical (α,β )−triple I method as follows:

C′(w) = sup
u∈U

T (T (α, I(A(u),sup
v∈V

T (T (β , I(B(v),

C(w))),B′(v)))),A′(u)),w ∈W (25)

where I is an implication on [0,1] satisfying (P5) and
(P), and T is its residual.
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Especially, if I is the residuum of a left-
continuous t-norm T , A′ and B′ are ”singleton” fuzzy
sets attaining normality at u0 ∈U and v0 ∈V respec-
tively, and α = β = 1 in (25), then we have

C′(w) =T (T (1, I(A(u0),T (T (1, I(B(v0),C(w))),

B′(v0)))),A′(u0))

=I(A(u0), I(B(v0),C(w)))

=I(T (A(u0),B(v0)),C(w)).

This is the result obtained by CRI or by triple I
method or by the hierarchical CRI [3’].

If I in (25) satisfies (P1), then T (1,b) = b for any
b∈ [0,1]. Further, taking α = β = 1 in (25), we have

C′(w) = sup
u∈U

T (I(A(u),sup
v∈V

T (I(B(v),C(w)),B′(v))),

A′(u)),w ∈W (26)

If I also satisfies (P2), then T is commutative. Thus,
(26) is just the hierarchical CRI given by Balasubra-
maniam in [34].

In the sequel, we investigate the equivalence be-
tween the classical α−triple I method (17) and the
hierarchical (α,β )−triple I method (25).

Theorem 16. Assume that the inputs A′ and B′ are
”singleton” fuzzy sets on their respective domains
U and V , then (17) and (25) are equivalent when the
implication I on [0,1] satisfies (P1),(P4), (P5) and
(P), its residual T is associative, and α ∈ [0,1],β =
1.

Proof. Assume that the ”singleton” fuzzy sets A′

and B′ attain normality at points u0 ∈ U and v0 ∈
V , respectively. Since (P1) and (P4) follow that
T (1,b) = T (b,1) = 1 and T (a,0) = T (0,a) = 0 for
any a,b ∈ [0,1], and (P5) and (P) follow that T is
nondecreasing in its two components, we get for any
w ∈W ,

(17) =C′(w)

= sup
u∈U,v∈V

T (T (α, I(T (A(u),B(v)),C(w))),

T (A′(u),B′(v)))

=T (T (α, I(T (A(u0),B(v0)),C(w))),

T (A′(u0),B′(v0)))

=T (α, I(T (A(u0),B(v0)),C(w))), (27)

(25) =C′(w)

= sup
u∈U

T (T (α, I(A(u),sup
v∈V

T (T (β , I(B(v),

C(w))),B′(v)))),A′(u))

=T (T (α, I(A(u0),T (T (1, I(B(v0),C(w))),

B′(v0)))),A′(u0))

=T (α, I(A(u0), I(B(v0),C(w)))) (28)

Since I and T are residual to each other, the
associativity of T is equivalent to I(T (a,b),c) =
I(a, I(b,c)) for all a,b,c ∈ [0,1] (see [17]), we ob-
tain that (27)=(28), i.e., (17) and (25) are equivalent.

Example 2. Suppose we have the same
U ,V ,W ,α,β ,A,B,C,A′,B′ and given rule as those
in Example 1. Now we calculate C′ using hierarchi-
cal full-implicational reasoning method (20).

C1(w1) =sup{T (T ([0.8,0.9],II,t([0.1,0.2],

[0.6,0.7])), [0.2,0.3]),T (T ([0.8,0.9],

II,t([0.6,0.7], [0.6,0.7])), [0.5,0.7]),

T (T ([0.8,0.9],II,t([0.9,1], [0.6,0.7])),

[0.8,0.9]),T (T ([0.8,0.9],II,t([0.5,0.6],

[0.6,0.7])), [0.6,0.8])}
=sup{[0,0.3], [0.5,0.7], [0.6,0.7], [0.6,0.8]}
=[0.6,0.8].

Then we get

C′(w1) =sup{T (T ([0.7,0.8],II,t([0.3,0.4],

[0.6,0.8])), [0.4,0.5])T (T ([0.7,0.8],

II,t([0.9,1], [0.6,0.8])), [0.8,1]),

T (T ([0.7,0.8],II,t([0.7,0.8], [0.6,0.8]),

[0.8,0.9])}
=sup{[0.4,0.5], [0.6,0.7], [0.6,0.7]}
=[0.6,0.7].

Similarly, we have C′(w2) = [0.7,0.8] and
C′(w3) = [0.4,0.5]. Therefore

C′ =
[0.6,0.7]

w1
+

[0.7,0.8]
w2

+
[0.4,0.5]

w3
.
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5. URC full-implicational reasoning method

For the interval-valued fuzzy rule (13), i.e. (A,B)⇒
C, a given multi-input (A′,B′) and α,β ∈ LI , to
obtain the output C′, we now propose URC full-
implicational reasoning method as follows:

Step 1) Consider if-then rule A⇒C, then for a
given α ∈ LI and the given input A′, by α−triple I
method we get the output C′

1:

C′
1(w) = sup

u∈U
T (T (α,II,t(A(u),C(w))),A′(u)),

w ∈W (29)

Step 2) Consider if-then rule B⇒C, then for a
given β ∈ LI and the given input B′, by β−triple I
method we get the output C′

2 as follows:

C′
2(w) =sup

v∈V
T (T (β ,II,t(B(v),C(w))),B′(v)),

w ∈W (30)

Taking C′(w) = C′
1(w)∨C′

2(w), where ∨= max, we
get

C′(w) ={sup
u∈U

T (T (α,II,t(A(u),C(w))),A′(u))}

∨{sup
v∈V

T (T (β ,II,t(B(v),C(w))),B′(v))}

(31)

where the implication II,t on LI is determined by
(8) and the T is its residual. We also call the reason-
ing method determined by (31) URC (α,β )−triple
I method.

Especially, if the employed implication I satis-
fies (P1),(P4), (P5) and (P), and α = β = 1LI in (31),
then by T (1LI ,y) = y from the proof of Corollary 8,
we have for any w ∈W ,

C′(w) ={sup
u∈U

T (II,t(A(u),C(w)),A′(u))}

∨{sup
v∈V

T (II,t(B(v),C(w)),B′(v))} (32)

We call the method determined by (32) URC triple I
method.

The following theorem shows that URC triple I
method has MP property.

Theorem 17. If the implication I on [0,1] satis-
fies (P1),(P4),(P5) and (P), then the triple I method
given by (32) has MP property for normal inputs,
i.e., A′ = A and B′ = B imply C′ = C if A and B are
normal.

Proof. From the proof of Theorem 9 we
know that T (x,1LI ) = x,II,t(1LI ,y) = y and
T (II,t(x,y),x) 6LI y hold for all x,y ∈ LI . Since
A and B are normal, there exist u0 ∈U and v0 ∈ V
such that A(u0) = B(v0) = 1LI . Taking A′ = A and
B′ = B in (32), we have for any w ∈W ,

C′(w) ={sup
u∈U

T (II,t(A(u),C(w)),A(u))}

∨{sup
v∈V

T (II,t(B(v),C(w)),B(v))}

>LI T (II,t(A(u0),C(w)),A(u0))

∨T (II,t(B(v0),C(w)),B(v0))

=C(w)∨C(w) = C(w),

C′(w) ={sup
u∈U

T (II,t(A(u),C(w)),A(u))}

∨{sup
v∈V

T (II,t(B(v),C(w)),B(v))}

6LIC(w)∨C(w) = C(w).

So we get C′(w) = C(w) for all w ∈W , i.e., we
obtain that C′ = C if A′ = A and B′ = B.

Similarly to Theorem 10 and Theorem 11, we
can prove the following two theorems.

Theorem 18. Suppose the conditions in Theorem 3
are satisfied and suppose U,V and W all contain fi-
nite elements. If T in (8) is continuous in the first
argument, then the output (31) is continuous w.r.t.
the parameters α and β in the metric dU .

Theorem 19. Suppose the conditions in Theorem 3
are satisfied and suppose U,V and W all contain fi-
nite elements. If T in (8) is continuous in the second
argument, then the output (31) is continuous w.r.t.
the inputs A′ and B′ in the metric dU .

Remark 4. The α−triple I method (15) and the
URC (α,β )−triple I method (31) are not equiva-
lent in general even if α = β . In fact, if the inputs
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A′ and B′ are ”singleton” IVFSs attaining normal-
ity at points u0 ∈U and v0 ∈V respectively, α = β ,
and the employed implication is II,t defined by (8),
where the implication I on [0,1] satisfies (P1), (P4),
(P5) and (P) and its residual T determined by (7) is
distributive over max, then from the proof of Theo-
rem 13, we have, for any w ∈W :

(31) =C′(w)

=T (T (α,II,t(A(u0),C(w))),A′(u0))}
∨T (T (α,II,t(B(v0),C(w))),B′(v0))

=T (α,II,t(A(u0),C(w)))

∨T (α,II,t(B(v0),C(w)))

Since the mapping T is distributive over max, i.e. ∨,
by using the formula (12), it is easy to verify that
T (α,x∨ y) = T (α,x)∨T (α,y) for any x,y ∈ LI .
So we get

(31) =C′(w) = T (α,II,t(A(u0),C(w))

∨II,t(B(v0),C(w))) (33)

Comparing (33) with (23), we know (15) is not
equivalent to (31) in general since II,t(T (x,y),z) =
II,t(x,z) ∨II,t(y,z) does not hold in general for
any x,y,z ∈ LI . Especially, if we take t = 1, i.e.,
T (x,y) = [T (x1,y1),T (x2,y2)], then it is easy to ver-
ify that II,t(T (x,y),z) >LI II,t(x,z)∨II,t(y,z) for
any x,y,z ∈ LI and hence we have (15) >LI (31) in
this case. If we restrict our discussion to Zadeh’s
fuzzy sets, then in a similar way as the above, we
can get the URC (α,β )−triple I method as follows:

C′(w) ={sup
u∈U

T (T (α, I(A(u),C(w))),A′(u))}∨

{sup
v∈V

T (T (β , I(B(v),C(w))),B′(v))},w ∈W

(34)

where A,A′,B,B′,C and C′ are Zadeh fuzzy sets on
their respective domains U, V and W , α,β ∈ [0,1],
I is an implication on [0,1] satisfying (P5) and (P),
and T is the mapping residual to I.

Note that if the mapping T in (34) is a t-norm,
then it must be left-continuous, this is because that
the implication I satisfies (P5) and (P) and hence T
and I are residual to each other. Further, if α = β =

1, and A′ and B′ are ”singleton” fuzzy sets attaining
normality at u0 ∈ U and v0 ∈ V respectively, then
(34) becomes as follows:

C′(w) =T (T (1, I(A(u0),C(w))),A′(u0))

∨T (T (1, I(B(v0),C(w))),B′(v0))

=I(A(u0),C(w))∨ I(B(v0),C(w))

=I(T (A(u0),B(v0)),C(w)), w ∈W (35)

The last step is derived from I(T (a,b),c) = I(a,c)∨
I(b,c) for all a,b,c ∈ [0,1], which is true for any bi-
nary operator I : [0,1]2 → [0,1] satisfying (P4) (see
[47]). (35) is just the result obtained by CRI or by
classical triple I method.

About the equivalence between the classical
α−triple I method (17) and the URC (α,β )−triple
I method (34), we have the following result.

Theorem 20. Assume that the inputs A′ and B′ are
”singleton” fuzzy sets on their respective domains
U and V , then (17) and (34) are equivalent when the
implication I on [0,1] satisfies (P1),(P4), (P5) and
(P), its residual T is distributive over ∨, and α = β .

Proof. Assume that the ”singleton” fuzzy sets A′

and B′ attain normality at points u0 ∈ U and v0 ∈
V , respectively. Since (P1) and (P4) follow that
T (1,b) = T (b,1) = 1 and T (a,0) = T (0,a) =
0 for any a,b ∈ [0,1], and (P5) and (P) fol-
low that T is nondecreasing in its two compo-
nents, we get for any w ∈ W , (17) = (27) =
T (α, I(T (A(u0),B(v0)),C(w))), and

(34) =C′(w)

={sup
u∈U

T (T (α, I(A(u),C(w))),A′(u))}

∨{sup
v∈V

T (T (β , I(B(v),C(w))),B′(v))}

=T (T (α, I(A(u0),C(w))),A′(u0))}
∨T (T (α, I(B(v0),C(w))),B′(v0))

=T (α, I(A(u0),C(w)))∨T (α, I(B(v0),C(w)))

=T (α, I(A(u0),C(w))∨ I(B(v0),C(w))) (36)

Since (P4) follows that I(T (a,b),c) = I(a,c) ∨
I(b,c) holds for any a,b,c ∈ [0,1], we know
(27)=(36), i.e., (17) is equivalent to (34).
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Example 3. Suppose we have the same
U,V,W,α,β ,A,B,C,A′,B′ and given rule as those
in Example 1. Now we calculate C′ using URC
full-implicational reasoning method (31).

C′
1(w1) =sup{T (T ([0.7,0.8],II,t([0.3,0.4],

[0.6,0.7])), [0.4,0.5]),T (T ([0.7,0.8],

II,t([0.9,1], [0.6,0.7])), [0.8,1]),

T (T ([0.7,0.8],II,t([0.7,0.8], [0.6,0.7])),

[0.8,0.9])}
=sup{[0.4,0.5], [0.6,0.7], [0.6,0.7]}
=[0.6,0.7].

C′
2(w1) =sup{T (T ([0.8,0.9],II,t([0.1,0.2],

[0.6,0.7])), [0.2,0.3]),T (T ([0.8,0.9],

II,t([0.6,0.7], [0.6,0.7])), [0.5,0.7])

T (T ([0.8,0.9],II,t([0.9,1], [0.6,0.7])),

[0.8,0.9])T (T ([0.8,0.9],II,t([0.5,0.6],

[0.6,0.7])), [0.6,0.8])}
=sup{[0,0.3], [0.5,0.7]], [0.6,0.7], [0.6,0.8]}
=[0.6,0.8].

C′(w1) =C′
1(w1)∨C′

2(w1) = [0.6,0.7]∨ [0.6,0.8]

=[0.6,0.8].

Similarly, we have C′(w2) = [0.8,0.8] and
C′(w3) = [0,0.5]. Therefore

C′ =
[0.6,0.8]

w1
+

[0.8,0.8]
w2

+
[0,0.5]

w3
.

6. Conclusion

In this paper, a class of interval-valued fuzzy impli-
cations has been constructed, and by means of them,
the α-triple I and triple I methods for IVFR with
multi-antecedent rules have been established. We
have also proved that the above triple I method has

MP property is also continuous respectively w.r.t.
the parameter α and the inputs. Further, we have
applied the fully implicational idea to the hierar-
chical and URC methods, and proposed hierarchi-
cal and URC full-implicational methods which in-
clude hierarchical (α,β )−triple I and triple I meth-
ods and URC (α,β )−triple I and triple I methods.
We have proved that the hierarchical and the URC
triple I methods have MP property and they are
continuous respectively w.r.t. the parameter (α,β )
and the inputs., the α-triple I and the hierarchical
(α,β )−triple I methods are equivalent and the α-
triple I and the URC (α,β )−triple I methods are
also equivalent under some conditions. Moreover,
for the case of Zadeh fuzzy sets, a series of corre-
sponding results have been obtained.

The results obtained in this paper generalized, on
the one hand, the fully implicational methods of ap-
proximate reasoning from ordinary fuzzy environ-
ments to interval-valued fuzzy environments, and
on the other hand, proposed new full-implicational
methods for fuzzy reasoning. In addition, our com-
puting formulas not only have wide application
fields since they cover more implications, but will
also bring convenience to analyzing the reasoning
methods algebraically and to making further study
to their logical foundation.
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