International Conference on Education, Management and Computing Technology (ICEMCT 2015)

Distributed complex event processing using rule deployment

Kang Sun*?, YongHeng Wang?®, ShuGuang Peng*®
123 College of Information Science and Engineering, Hunan University, Changsha 410082, China
3908481574@qg.com, "yh.wang.cn@gmail.com,’pengsg2007@126.com

Keywords: Complex event processing; Distributed processing; Event based systems

Abstract. Several complex event processing (CEP) middleware solutions have been proposed in the
past. They act by processing primitive events generated by sources, extracting new knowledge in
the form of composite events, and delivering them to interested sinks. Event-based applications
often involve a large number of sources and sinks, possibly dispersed over a wide geographical area.
To better support these scenarios, the CEP middleware can be internally built around several,
distributed processors, which cooperate to provide the processing and routing service. This paper
proposes the rule patition and deployment technique for distributed complex event processing. Our
evaluation compares the presented solutions and shows their benefits with respect to a centralized
deployment, both in terms of network traffic and in terms of forwarding delay.

Introduction

At present, the continuous development of the Internet of Things(loT) technology led to a large
number of applications.The information processing is one of the key problems needed to be solved .
A 10T application may containa wide variety of connected devices,these devices constantly
produce signals. For a large complex network system, these signals are massive,we call these
events formed by directly obtained signals as the primitive events, which is unable to deal with or
understand by the upper application or the wuser.A event justlike "the vehicle left
the garage™or"indoor temperature rise of 1 degrees Celsius"is meaningful to the user. We call
the more upper events obtained by processing the primitive events as complex events. The task of
identifying so called composite events from primitive ones is referred as Complex Event Processing
(CEP) [1]. It operates by interpreting a set of event definition rules, which describe how composite
events are defined from primitive ones.

Event-based applications possibly dispersed over a wide geographical area. Typical examples
are sensor networks for environmental monitoring [5] and financial applications requiring a
continuous analysis of stocks to detect trends [8]. To better support these scenarios, the CEP system
can be internally built around several, distributed processors, connected together to form an overlay
network, and cooperating to provide the processing and routing service.

The first important aspect is often called operator placement: given a network of processors and
a set of rules, it finds the best mapping of the operators defined in rules on available processors. In
the last few years, different solutions have been proposed for operator placement [9]. The problem
is known to be extremely complex to solve, even for small instances with a reduced number of
processors and rules. Only a few proposals have considered a decentralized algorithm for solving
the operator placement [10].

On the other hand, operator placement is only part of the problem: when the processing effort is
split among different processors, it also becomes necessary to precisely define the protocols that
govern the interaction among them, specifying how rules and subscriptions are deployed, how
primitive events are forwarded from the sources to the processors, and how composite events are
finally delivered to sinks. These issues are usually not considered by existing CEP systems: most of
them are based on a centralized deployment, in which all the processing is performed on a single
machine (e.g. [2, 4]). Even when distributed processing is allowed, the communication among
processors often requires manual configuration [3].

According these challenges, we have proposed the rule patition and deployment technique for

© 2015. The authors - Published by Atlantis Press 1244

distributed complex event processing. The solutions presented in this paper are explicitly tailored
to large scale distributed scenarios: they take into account the topology of the processing network as
well as the location of event sources and their generation rates. Moreover, they do not rely on a
centralized decider: each processor autonomously decides which parts of the processing to execute
locally and which parts can and should be delegated to other processors.

Background

Events and subscriptions models

In order to be understood and processed, events are observed by sources and encoded in event
notifications (or primitive events). We assume that each event notification has an associated type,
which defines the number, order, names, and types of the attributes that build the notification.
Notifications have also a timestamp, which represents the occurrence time of the event they encode.
In the following we assume that processors receive events in timestamp order: mechanisms to cope
with out-of-order arrivals of events have been discussed in the past and can be adopted to ensure
this property [11]. As an example, the air temperature in a given area at a specific time can be
encoded into the following event notification:

Temp@10(area=" Al” , value=24.5)

Figure 1 summarizes the key architectural components and we consider in this paper and their
interactions.

Our deployment strategies rely on the knowledge of the type of events produced at each source.
Accordingly, we ask sources to advertise the type of the primitive events they will publish. This
builds a contract between the sources and the system: only events whose type has been advertised
will be processed[6] .

The interests of sinks are modeled through subscriptions, including a type and a set of
constraints. A subscription s matches an event notification e if s has the same type as e and all the
constraints expressed in s are satisfied by the attributes in e. As an example, the following
subscription matches the previous temperature notification.

Temp(area=" Al” , value>=12)

Publish() Complex event Subscribe()
processing engine

P /, \/\
~"m.. \e
o Mg oW /Q
é”7[‘5\ ~ — QNe(\
Event observers Event consumers
(sources) (sinks)

Fig.1 The high level view of a CEP application architectural

Rule definition language

In this paper, we consider rules written using the TESLA language [7]; since it includes all the
typical operators used for CEP, we believe this choice will not impact the generality of our results

Each TESLA rule has the following general structure:

Rule R

define CE(att_1: Type_1, .. ,att n: Type_n)
from Pattern

where att 1=f 1, .. ,att n=f n

Shortest Path Tree
We consider a set of processors P connected with each others at two levels. (i) On top of the

1245

physical network, is the overlay network. We do not impose any condition on its structure:
processors can be connected in any way, forming a generic graph. (ii) To simplify routing, our
deployment strategies organize processors into one processing trees on top of the overlay
network.

Since we want to minimize latency in collecting information from sources and delivering results
to sinks, we build Shortest Path Tree using the link delay as a cost metric. In particular, to build the
tree Tp rooted at processor p, p sends a special message CreateTreep to all its neighbors. When a
processor p receives such a message it behaves as follows.

— If p receives the message for the first time, it marks the sender s as its father in Tp, sends an
ACK message to s, and forwards the message to all its neighbors except s.
— If p already received the message, it sends a NACK message to the sender s.

When a processor p € P receives an ACK, it marks the sender as its child in Tp. p obtains a
complete knowledge about its children in the tree as soon as it receives an ACK or NACK message
from all its neighbors. This protocol allows all processors to obtain local knowledge about Tp, i.e.,
their father and the set of their children.

Rule partition and deployment

To enable incremental evaluation of primitive events as they flow from the sources to the root of
a processing tree, rules must be recursively partitioned into partial rules, moving in the opposite
direction. The partitioning algorithm exploits the information stored in the advertisement tables of
each processor.

Partitioning TESLA rules

For the sake of clarity, we present the partitioning algorithm incrementally, through examples
that progressively include all the features offered by TESLA. As a first example, consider Rule R1

Rule R1
define CompEvent()
from A() and last B() within 5 min from A

and last C() within 5 min from B
and last D() within 5 min from C
and last E() within 5 min from D
and the processing tree T1 shown in Fig. 2. 1 is the root of the tree and there are three sources:

° A’B
O =
Onlk

Fig.2 Rule deployment:an example
3 produces primitive events of type A and B; 4 produces events of type C and E; 5 produces events
of type D. This information is stored in the advertisement table of processor 2; since advertisements
are combined at each level of the tree, 1 has a single entry in its advertisement table, stating that all
types of events (A, B, C, D, and E) come from 2.

Partial rules include a pattern but do not generate composite events: they are used to limit as
much as possible the number of event notifications that are forwarded up along the processing tree.
When a processor p, responsible for processing a partial rule R, receives a set of primitive events P
E that satisfy the pattern in R, it forwards all events in P E to its father.

Consider for example processor 3: its clients are the only sources for events of type A and B. To
correctly process Rule R1, processor 2 does not need to receive all events of type A and B, but only
those notifications of events A that are preceded by an event B in the previous 5 min; moreover,
since the last-within operator is used, only the last B event before each A is relevant. Accordingly, 2

1246

creates the following partial rule for 3.
A() and last B() within 5 min from A
Similarly, 2 does not need to receive all events of type C, but only those preceeded by an event
of type E. Accordingly, it creates and sends the following partial rule to 4.
C() and each E() within 10 min from C
C and E are not contiguous elements in the sequence defined by Rule R1, but they are separated
by event D, which is not produced by the sources of processor 4. Accordingly, the partial rule
considers a timing constraints that sums the time limits between C and D together with the time
limit between D and E. Similarly, the local knowledge of processor 4 is not sufficient to evaluate the
single selection constraint on E; for this reason, the partial rule adopts the each-within operator,
capturing all notifications of E followed by a C event within 10 min. Finally, processor 5 receives
the following partial rule, asking for all events of type D:
D()
The partitioning algorithm described above is applied recursively: partial rules are split into
other partial rules, until all sources have been reached.

Handling events from multiple sources

We now describe how the partitioning algorithm changes when events are produced at multiple
sources. Consider again Rule R1 and the processing tree T1 represented in Fig. 3.

At a first sight, it may be tempting to split Rule R1 into two partial rules, one involving A, B,
and C (for processor 2), and one involving C, D, and E (for processor 3). However, neither 2, nor 3
receive all events of type C, so they may produce wrong results if they consider C during processing.
It is processor 1 that is responsible for combining events of type C with the others. More in general,
the detection of a certain type t of events may be delegated to a child c in the processing tree only
when c is the only one processor that advertises type t. Accordingly, in the situation shown in

Fig. 6, Rule R1 is split into three partial rules. The first one, involving events A and B, is
forwarded to 2:

AB,C

C,D,E

Fig.3 Handling events from multiple sources
A() and last B() within 5 min from D
The second one, involving events D and E, is forwarded to 3:
D() and last E() within 5 min from D
The last one, involving events of type C, is forwarded to both 2 and 3: C() .

Handling parameters

TESLA rules may include parameters that bind the content of different primitive events. While
partitioning a rule, if a parameter par involves only events that are captured by a partial rule R, than
par is added to R. Otherwise, if par involves events from different rules, it cannot be attached to any
of them; in this case par is checked at a processor higher in the tree, where all involved primitive
events are received. Consider for example Rule R2 below and the two processing trees in Fig. 4.

Rule R2
define CompEvent()
from A(v=$x) and last B(v=$x) within 5 min from A

and last C() within 5 min from B
In Fig. 4a, both events of type A and B come from the same processor 2. In this case the
parameter can be added to the partial rule sent to 2, which becomes:
A(v=%$x) and last B(v=$x) within 5 min from A
On the contrary, in Fig. 4b events of type A come from 2, while events of type B come from 3.

1247

Accordingly, the partial rule sent to 2 (i.e., A()) cannot refer to the parameter, and the same applies
to the partial rule sent to 3:
B and last C() within 5 min from B
Processor 1 remains responsible for detecting Rule R2 and for checking the values of attribute v
in events A and B.

Handling negations
Similarly to parameters, negations can be attached to partial rules only if they include all the
primitive events used to specify their time bound. Consider for example Rule R3 and the processing

trees in Fig. 3.
Rule R3
define CompEvent()
from A() and last B() within 5 min from A

and last C() within 5 min from B
and not D() between C and B

A, B A

(a) (b)

Fig.4 Handling parameters

A AB

B,C,D C,D
(a) (b)

Fig.5 Handling negations
In Fig. 5a both events B and C come from the same processor as the negated event D.
Accordingly, we can include the negation inside the partial rule delivered to processor 3, which
becomes:
B() and last C() within 5 min from B
and not D() between C and B

On the contrary, in Fig. 5b, events of type B and C are detected by two different processors. In
this case, the negation cannot be included as part of the partial rule for 3. All events of type D have
to be delivered to 1, which is responsible for processing the negation. Accordingly, 2 receives the
following partial rule:

A() and last B() within 5 min from B

while 3 receives two different partial rules, one for events of type C (i.e., C()), and one for

events of type D (i.e., D()).

Evaluation

All the tests described below were performed on a 2.8 GHz AMD Phenom Il PC, with 4 cores
and 6 GB of RAM, running 64 bit Linux. We use a local client to generate events at a constant rate
and to collect results. Omnet++ is a discrete event simulator for modelling communication networks.
We create an emulated network using the Omnet++ simulator. Tree performs distributed processing
on a tree architecture. Centre exploits a single processor, which receives primitive events, processes
them, and delivers composite events to interested sinks.

Fig.6 shows how results change when we increase the number of deployed TESLA rules. The

1248

delay is computed as the difference between the time in which a sink receives a composite event e,
and the time in which e occurs. Since we are working in an emulated environment, we can measure
this time without incurring in synchronization errors between processors. Figure shows how the
overall network traffic increases with the number of deployed rules. As rules increase in number,
they attract more and more primitive events, forcing processors to forward them inside the overlay
network. The traffic grows faster in Centre strategies than in Tree ones.

)

Average Traffic (KB/s

Do
(=]

40 60 80 100 120 140
Number of Rules

Fig.6 Number of rules deployed

Conclusion

In this paper we introduced and compared different deployment strategies for distributed CEP.
Given a network of processors, they precisely define the communication required to handle rule and
subscription deployment, and to collect, process, and deliver event notifications. In these solutions,
deployment is performed in a distributed way, with each processor autonomously taking decisions
based on local knowledge about their neighbors. We analyze the different strategies and compare
them against a centralized deployment.

The future problem is modeling the uncertainty associated to collected information.In particular,
when dealing with large scale distributed systems, it becomes of primary importance to consider the
uncertainty associated with time and location of event occurrence.

References

[1] LUCKHAM D C. The power of events: an introduction to complexe event processing in
distrituted enterprise systems. Boston: Addison Wesley, 2002.

[2] Agrawal J, Diao Y, Gyllstrom D, Immerman N (2008) Efficient pattern matching over event
streams. In: SIGMOD 08, ACM, New York, pp 147-160.

[3] Ali M (2010) An introduction to microsoft sql server streaminsight. In: Proceedings of the 1st
international conference and exhibition on computing for geospatial research and application,
COM.Geo ’10, ACM, New York, NY, USA, p 66:1.

[4] Brenna L, Demers A, Gehrke J, Hong M, Ossher J, Panda B, Riedewald M, Thatte M, White W
(2007) Cayuga: a high-performance event processing engine. In: SIGMOD 07, ACM, New York,
pp 1100-1102.

[5] Broda K, Clark K, Miller R, Russo A (2009) Sage: a logical agent-based environment
monitoring and control system. In: Aml °09, pp 112-117.

[6] Carzaniga A, Rosenblum DS, Wolf AL (2000) Achieving scalability and expressiveness in an
internetscale event notification service. PODC *00, Portland, pp 219-227.

[7] Cugola G, Margara A (2010) Tesla: a formally defined event specification language. In:
DEBS ’10, ACM, New York, pp 50-61.

1249

[8] Demers AJ, Gehrke J, Hong M, Riedewald M, White WM (2006) Towards expressive
publish/subscribe systems. In: EDBT 06, pp 627-644.

[9] Lakshmanan GT, Li Y, Strom R (2008) Placement strategies for internet-scale data stream
systems. In: IEEE Internet Comput 12(6):50-60.

[10] Pietzuch P, Ledlie J, Shneidman J, Roussopoulos M, Welsh M, Seltzer M (2006)
Network-aware operator placement for stream-processing systems. In: ICDE ’06, IEEE Computer
Society.

[11] Srivastava U, Widom J (2004) Flexible time management in data stream systems. In:
PODS ’04, ACM, New York, pp 263-274.

1250

