
 

Distributed complex event processing using rule deployment 
Kang Sun1,a, YongHeng Wang2,b, ShuGuang Peng3,c 

1,2,3 College of Information Science and Engineering, Hunan University, Changsha 410082, China 
a908481574@qq.com, byh.wang.cn@gmail.com,cpengsg2007@126.com 

Keywords: Complex event processing; Distributed processing; Event based systems 

Abstract. Several complex event processing (CEP) middleware solutions have been proposed in the 
past. They act by processing primitive events generated by sources, extracting new knowledge in 
the form of composite events, and delivering them to interested sinks. Event-based applications 
often involve a large number of sources and sinks, possibly dispersed over a wide geographical area. 
To better support these scenarios, the CEP middleware can be internally built around several, 
distributed processors, which cooperate to provide the processing and routing service. This paper 
proposes the rule patition and deployment technique for distributed complex event processing. Our 
evaluation compares the presented solutions and shows their benefits with respect to a centralized 
deployment, both in terms of network traffic and in terms of forwarding delay. 

Introduction 

At present, the continuous development of the Internet of Things(IoT) technology led to a large 
number of applications.The information processing is one of the key problems needed to be solved . 
A IOT application may contain a wide variety of connected devices,these devices  constantly 
produce signals. For a large complex network system,  these signals are massive,we call these 
events formed by directly obtained signals as the primitive events, which is unable to deal with or 
understand by the upper application or the user.A event just like "the vehicle left 
the garage"or"indoor temperature rise of 1 degrees Celsius"is meaningful to the user. We call 
the more upper events obtained by processing the primitive events as complex events. The task of 
identifying so called composite events from primitive ones is referred as Complex Event Processing 
(CEP) [1]. It operates by interpreting a set of event definition rules, which describe how composite 
events are defined from primitive ones.  

Event-based applications possibly dispersed over a wide geographical area. Typical examples 
are sensor networks for environmental monitoring [5] and financial applications requiring a 
continuous analysis of stocks to detect trends [8]. To better support these scenarios, the CEP system 
can be internally built around several, distributed processors, connected together to form an overlay 
network, and cooperating to provide the processing and routing service. 

The first important aspect is often called operator placement: given a network of processors and 
a set of rules, it finds the best mapping of the operators defined in rules on available processors. In 
the last few years, different solutions have been proposed for operator placement [9]. The problem 
is known to be extremely complex to solve, even for small instances with a reduced number of 
processors and rules. Only a few proposals have considered a decentralized algorithm for solving 
the operator placement [10].  

On the other hand, operator placement is only part of the problem: when the processing effort is 
split among different processors, it also becomes necessary to precisely define the protocols that 
govern the interaction among them, specifying how rules and subscriptions are deployed, how 
primitive events are forwarded from the sources to the processors, and how composite events are 
finally delivered to sinks. These issues are usually not considered by existing CEP systems: most of 
them are based on a centralized deployment, in which all the processing is performed on a single 
machine (e.g. [2, 4]). Even when distributed processing is allowed, the communication among 
processors often requires manual configuration [3]. 

According these challenges, we have proposed the rule patition and deployment technique for 

 

International Conference on Education, Management and Computing Technology (ICEMCT 2015) 

© 2015. The authors - Published by Atlantis Press 1244



 

distributed complex event processing. The solutions presented in this paper  are explicitly tailored 
to large scale distributed scenarios: they take into account the topology of the processing network as 
well as the location of event sources and their generation rates. Moreover, they do not rely on a 
centralized decider: each processor autonomously decides which parts of the processing to execute 
locally and which parts can and should be delegated to other processors. 

Background  

Events and subscriptions models 
In order to be understood and processed, events are observed by sources and encoded in event 

notifications (or primitive events). We assume that each event notification has an associated type, 
which defines the number, order, names, and types of the attributes that build the notification. 
Notifications have also a timestamp, which represents the occurrence time of the event they encode. 
In the following we assume that processors receive events in timestamp order: mechanisms to cope 
with out-of-order arrivals of events have been discussed in the past and can be adopted to ensure 
this property [11]. As an example, the air temperature in a given area at a specific time can be 
encoded into the following event notification: 

Temp@10(area=”A1”, value=24.5) 
Figure 1 summarizes the key architectural components and we consider in this paper and their 

interactions.  
Our deployment strategies rely on the knowledge of the type of events produced at each source. 

Accordingly, we ask sources to advertise the type of the primitive events they will publish. This 
builds a contract between the sources and the system: only events whose type has been advertised 
will be processed[6] .  

The interests of sinks are modeled through subscriptions, including a type and a set of 
constraints. A subscription s matches an event notification e if s has the same type as e and all the 
constraints expressed in s are satisfied by the attributes in e. As an example, the following 
subscription matches the previous temperature notification. 

Temp(area=”A1”, value>=12) 

Primitive events
Complex 

events

Event observers
(sources)

Publish() Subscribe()

Event consumers
(sinks)

Complex event 
processing engine

 
Fig.1 The high level view of a CEP application architectural 

 
Rule definition language 
In this paper, we consider rules written using the TESLA language [7]; since it includes all the 

typical operators used for CEP, we believe this choice will not impact the generality of our results 
Each TESLA rule has the following general structure: 

Rule  R 
define  CE(att_1: Type_1, ．．, att_n: Type_n) 
from  Pattern 
where  att_1=f_1, ．．, att_n=f_n 

 
Shortest Path Tree  
We consider a set of processors P connected with each others at two levels. (i) On top of the 

 
1245



 

physical network, is the overlay network. We do not impose any condition on its structure: 
processors can be connected in any way, forming a generic graph. (ii) To simplify routing, our 
deployment strategies organize processors into one  processing trees on top of the overlay 
network.  

Since we want to minimize latency in collecting information from sources and delivering results 
to sinks, we build Shortest Path Tree using the link delay as a cost metric. In particular, to build the 
tree Tp rooted at processor p, p sends a special message CreateTreep to all its neighbors. When a 
processor p receives such a message it behaves as follows. 

 – If p receives the message for the first time, it marks the sender s as its father in Tp, sends an 
ACK message to s, and forwards the message to all its neighbors except s. 

 – If p already received the message, it sends a NACK message to the sender s.  
When a processor p ∈ P receives an ACK, it marks the sender as its child in Tp. p obtains a 

complete knowledge about its children in the tree as soon as it receives an ACK or NACK message 
from all its neighbors. This protocol allows all processors to obtain local knowledge about Tp, i.e., 
their father and the set of their children. 

Rule partition and deployment 

To enable incremental evaluation of primitive events as they flow from the sources to the root of 
a processing tree, rules must be recursively partitioned into partial rules, moving in the opposite 
direction. The partitioning algorithm exploits the information stored in the advertisement tables of 
each processor.  

Partitioning TESLA rules 
For the sake of clarity, we present the partitioning algorithm incrementally, through examples 

that progressively include all the features offered by TESLA. As a first example, consider Rule R1 
Rule R1 
define  CompEvent( ) 
from  A( )  and  last  B( )  within  5  min  from  A 
   and  last  C( )  within  5  min  from  B 
   and  last  D( )  within  5  min  from  C 
          and  last  E( )  within  5  min  from  D 

and the processing tree T1 shown in Fig. 2. 1 is the root of the tree and there are three sources:  

2

3

41

5

A,B

C,E

D
 

Fig.2 Rule deployment:an example 
3 produces primitive events of type A and B; 4 produces events of type C and E; 5 produces events 
of type D. This information is stored in the advertisement table of processor 2; since advertisements  
are combined at each level of the tree, 1 has a single entry in its advertisement table, stating that all 
types of events (A, B, C, D, and E) come from 2. 

Partial rules include a pattern but do not generate composite events: they are used to limit as 
much as possible the number of event notifications that are forwarded up along the processing tree. 
When a processor p, responsible for processing a partial rule R, receives a set of primitive events P 
E that satisfy the pattern in R, it forwards all events in P E to its father.     

Consider for example processor 3: its clients are the only sources for events of type A and B. To 
correctly process Rule R1, processor 2 does not need to receive all events of type A and B, but only 
those notifications of events A that are preceded by an event B in the previous 5 min; moreover, 
since the last-within operator is used, only the last B event before each A is relevant. Accordingly, 2 

 
1246



 

creates the following partial rule for 3. 
A( )  and  last  B( )  within  5  min  from  A 

Similarly, 2 does not need to receive all events of type C, but only those preceeded by an event 
of type E. Accordingly, it creates and sends the following partial rule to 4. 

C( )  and  each  E( )  within  10  min  from  C 
C and E are not contiguous elements in the sequence defined by Rule R1, but they are separated 

by event D, which is not produced by the sources of processor 4. Accordingly, the partial rule 
considers a timing constraints that sums the time limits between C and D together with the time 
limit between D and E. Similarly, the local knowledge of processor 4 is not sufficient to evaluate the 
single selection constraint on E; for this reason, the partial rule adopts the each-within operator, 
capturing all notifications of E followed by a C event within 10 min. Finally, processor 5 receives 
the following partial rule, asking for all events of type D: 

D( ) 
The partitioning algorithm described above is applied recursively: partial rules are split into 

other partial rules, until all sources have been reached. 
 
Handling events from multiple sources 
We now describe how the partitioning algorithm changes when events are produced at multiple 

sources. Consider again Rule R1 and the processing tree T1 represented in Fig. 3.  
At a first sight, it may be tempting to split Rule R1 into two partial rules, one involving A, B, 

and C (for processor 2), and one involving C, D, and E (for processor 3). However, neither 2, nor 3 
receive all events of type C, so they may produce wrong results if they consider C during processing. 
It is processor 1 that is responsible for combining events of type C with the others. More in general, 
the detection of a certain type t of events may be delegated to a child c in the processing tree only 
when c is the only one processor that advertises type t. Accordingly, in the situation shown in 

Fig. 6, Rule R1 is split into three partial rules. The first one, involving events A and B, is 
forwarded to 2: 

1

2

3

A,B,C

C,D,E
 

Fig.3 Handling events from multiple sources 
A( )  and  last  B( )  within  5  min  from  D 

The second one, involving events D and E, is forwarded to 3: 
D( )  and  last  E( )  within  5  min  from  D 

The last one, involving events of type C, is forwarded to both 2 and 3: C( ) . 
 

Handling parameters  
TESLA rules may include parameters that bind the content of different primitive events. While 

partitioning a rule, if a parameter par involves only events that are captured by a partial rule R, than 
par is added to R. Otherwise, if par involves events from different rules, it cannot be attached to any 
of them; in this case par is checked at a processor higher in the tree, where all involved primitive 
events are received. Consider for example Rule R2 below and the two processing trees in Fig. 4. 

Rule R2 
define  CompEvent( ) 
from  A( v=$x)  and  last  B(v=$x )  within  5  min  from  A 
   and  last  C( )  within  5  min  from  B 

In Fig. 4a, both events of type A and B come from the same processor 2. In this case the 
parameter can be added to the partial rule sent to 2, which becomes: 

A( v=$x)  and  last  B(v=$x )  within  5  min  from  A 
On the contrary, in Fig. 4b events of type A come from 2, while events of type B come from 3. 

 
1247



 

Accordingly, the partial rule sent to 2 (i.e., A() ) cannot refer to the parameter, and the same applies 
to the partial rule sent to 3: 

B  and  last  C( )  within  5  min  from  B 
Processor 1 remains responsible for detecting Rule R2 and for checking the values of attribute v 

in events A and B. 
 
Handling negations 
Similarly to parameters, negations can be attached to partial rules only if they include all the 

primitive events used to specify their time bound. Consider for example Rule R3 and the processing 
trees in Fig. 3. 

Rule R3 
define  CompEvent( ) 
from  A( )  and  last  B( )  within  5  min  from  A 
   and  last  C( )  within  5  min  from  B 
   and  not  D( )  between  C  and  B 

1

2

3

A,B

C

1

2

3

A

B,C
(a) (b)  

Fig.4 Handling parameters 

1

2

3

A

B,C,D

1

2

3

A,B

C,D
(a) (b)  

Fig.5 Handling negations 
In Fig. 5a both events B and C come from the same processor as the negated event D. 

Accordingly, we can include the negation inside the partial rule delivered to processor 3, which 
becomes: 

B( )  and  last  C( )  within  5  min  from  B 
and  not  D( )  between  C  and  B 

 
On the contrary, in Fig. 5b, events of type B and C are detected by two different processors. In 

this case, the negation cannot be included as part of the partial rule for 3. All events of type D have 
to be delivered to 1, which is responsible for processing the negation. Accordingly, 2 receives the 
following partial rule: 

A( )  and  last  B( )  within  5  min  from  B 
while 3 receives two different partial rules, one for events of type C (i.e., C() ), and one for 

events of type D (i.e., D() ). 

Evaluation 

All the tests described below were performed on a 2.8 GHz AMD Phenom II PC, with 4 cores 
and 6 GB of RAM, running 64 bit Linux. We use a local client to generate events at a constant rate 
and to collect results. Omnet++ is a discrete event simulator for modelling communication networks. 
We create an emulated network using the Omnet++ simulator. Tree performs distributed processing 
on a tree architecture. Centre exploits a single processor, which receives primitive events, processes 
them, and delivers composite events to interested sinks. 

Fig.6 shows how results change when we increase the number of deployed TESLA rules. The 

 
1248



 

delay is computed as the difference between the time in which a sink receives a composite event e, 
and the time in which e occurs. Since we are working in an emulated environment, we can measure 
this time without incurring in synchronization errors between processors. Figure shows how the 
overall network traffic increases with the number of deployed rules. As rules increase in number, 
they attract more and more primitive events, forcing processors to forward them inside the overlay 
network. The traffic grows faster in Centre strategies than in Tree ones. 

0

2

4

6

8

10

12

14

20 40 60 80 100 120 140
Number of Rules

A
v
e
r
a
g
e
 
T
r
a
f
f
i
c
(
K
B
/
s
)

Tree
Centre

 
Fig.6 Number of rules deployed 

Conclusion 

In this paper we introduced and compared different deployment strategies for distributed CEP. 
Given a network of processors, they precisely define the communication required to handle rule and 
subscription deployment, and to collect, process, and deliver event notifications. In these solutions, 
deployment is performed in a distributed way, with each processor autonomously taking decisions 
based on local knowledge about their neighbors. We analyze the different strategies and compare 
them against a centralized deployment. 

The future problem is modeling the uncertainty associated to collected information.In particular, 
when dealing with large scale distributed systems, it becomes of primary importance to consider the 
uncertainty associated with time and location of event occurrence. 

References 

[1] LUCKHAM D C. The power of events: an introduction to complexe event processing in 
distrituted enterprise systems. Boston: Addison Wesley, 2002.   

[2] Agrawal J, Diao Y, Gyllstrom D, Immerman N (2008) Efficient pattern matching over event 
streams. In: SIGMOD ’08, ACM, New York, pp 147–160. 

[3] Ali M (2010) An introduction to microsoft sql server streaminsight. In: Proceedings of the 1st 
international conference and exhibition on computing for geospatial research and application,   
COM.Geo ’10, ACM, New York, NY, USA, p 66:1. 

[4] Brenna L, Demers A, Gehrke J, Hong M, Ossher J, Panda B, Riedewald M, Thatte M, White W  
(2007) Cayuga: a high-performance event processing engine. In: SIGMOD ’07, ACM, New York, 
pp 1100–1102. 

[5] Broda K, Clark K, Miller R, Russo A (2009) Sage: a logical agent-based environment 
monitoring and control system. In: AmI ’09, pp 112–117. 

[6] Carzaniga A, Rosenblum DS, Wolf AL (2000) Achieving scalability and expressiveness in an 
internetscale event notification service. PODC ’00, Portland, pp 219–227. 

[7] Cugola G, Margara A (2010) Tesla: a formally defined event specification language. In: 
DEBS ’10, ACM, New York, pp 50–61. 

 
1249



 

[8] Demers AJ, Gehrke J, Hong M, Riedewald M, White WM (2006) Towards expressive 
publish/subscribe systems. In: EDBT ’06, pp 627–644. 

[9] Lakshmanan GT, Li Y, Strom R (2008) Placement strategies for internet-scale data stream 
systems. In: IEEE Internet Comput 12(6):50–60. 

[10] Pietzuch P, Ledlie J, Shneidman J, Roussopoulos M, Welsh M, Seltzer M (2006) 
Network-aware operator placement for stream-processing systems. In: ICDE ’06, IEEE Computer 
Society. 

[11]  Srivastava U, Widom J (2004) Flexible time management in data stream systems. In: 
PODS ’04, ACM, New York, pp 263–274. 

 
1250




