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Abstract. Spoken term detection in low-resource situations is a challenging problem, because 
traditional large vocabulary continuous speech recognition (LVCSR) approaches are often unusable. 
This paper introduces a method to use deep neural network (DNN) softmax outputs as input features 
in a query-by-example (QBE) spoken term detection (STD) system. Matches between queries and 
test utterances are located using a modified dynamic time warping (DTW) search approach. 
Subsystems are built with unsupervised Gaussian mixture model (GMM) and DNN monophone 
models trained on Chinese and English languages and evaluated on the SWS 2013 multilingual 
database of low-resource languages. The score-level fusion of these different subsystems are shown 
to improve performance significantly over the baseline results. 

Introduction 

Spoken term detection (STD) is the task of finding and locating a given query term in a set of audio 
documents.  With the rapid development of the internet and mobile devices, spoken term detection 
offers an approach to obtain valuable training resources from the large amount of online speech data. 
Systems based on large vocabulary continuous speech recognition (LVCSR) have significantly 
increased the accuracy of STD [1], but LVCSR systems require sufficient language resources, 
including tens of hours of transcription and a reliable pronunciation dictionary. In many real world 
scenarios, however, getting such resources is either too difficult or too expensive, which makes 
traditional LVCSR methods infeasible. Even the few resources that are available are often 
acoustically mismatched, which leads to severe performance degradations.  

Instead of giving queries in the form of text, the QBE approach uses a few audio segments 
containing keywords of interest as queries. The system then can search for segments that closely 
match these query examples from test data. The effectiveness of QBE systems relies on two key 
factors, the choice of features and an effective search algorithm. Choosing suitable features is the 
most important. A typical template-based approach simply uses acoustical features and a dynamic 
time warping (DTW) algorithm to match templates to test data [2, 3]. The use of posteriorgram 
features in template-matching can alleviate mismatches in speakers and environments. These 
posteriorgrams can be derived from phonetic lattices [4] or directly from a phone tokenizer [5,7]. For 
unsupervised keyword spotting tasks, a Gaussian posteriorgram based system has been proposed [6].  
All these different types of posteriorgrams try to represent a frame of audio data representing the 
speaker/environment as closely as possible, so the acoustic model will model the probability 
distributions over vectors of input acoustic features accurately. In [5] and [7], artificial neural 
network (ANN) based phoneme-state estimators are used, which achieve the best results in the 
SWS2013 evaluations [8]. 

Deep neural networks (DNNs) with many hidden layers have shown to outperform Gaussian 
mixture models (GMMs) at acoustic modeling, and are now widely used in a variety of speech 
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recognition tasks [9]. In this paper, we apply two DNN models trained on datasets of two different 
languages, Mandarin Chinese and English, to generate two sets of phone posteriorgrams as system 
inputs, and then combine these systems at the score level. The Chinese model is trained on 700 hours 
of Chinese speech. It has 5 hidden layers and an output layer with 98 units, which present 96 Chinese 
monophones and 2 non-speech monophones. The second DNN model is trained on 700 hours of 
English, with 5 hidden layers and an output layer with 41 units corresponding to English phonemes. 
The softmax output of the DNN models are used directly as input features of our QBE system.  

For the search algorithm, we adopt the modified DTW search used in [4] and [5]. Topological 
constraints are tied to the search process to improve search speed. 

For each match between the query and the test utterance that is reported, we get two scores. The 
baseline system uses the average distance as the score of the query. This score is then adjusted by 
subtracting the average of the highest two scores of all other queries in the same position. We 
calibrate these two sets of scores separately using z-norm. These two sets are then linearly added to 
produce the final scores of a single subsystem. The results of the different models are linearly 
combined at the score level. 

Details of the QBE system are described in next section. Then we introduce the database and show 
experimental results. Finally, conclusions are summarized. 

System description 

In this Section, we give a simple description of our QBE-STD system, including feature extraction, 
DTW-based query search and score calibration. 
Feature extraction. Our QBE system is designed to deal with low  resource conditions. There are 
two basic methods, using unsupervised training to get language independent features, or applying 
phone decoders trained on a specific language to produce features regardless of the actual language. 

For the unsupervised method, a GMM is trained on all the data in the database and is used to 
produce a Gaussian posteriorgram vector for each speech frame:  

1 2( ( | ), ( | ),..., ( | ))i i i m iq P C s P C s P C s= .                                                                                                              (1) 
      

where is denotes the thi speech frame and jC  is the thj  Gaussian component of the GMM. In this 
paper the number of Gaussian components m is set as 50. 

Compared to GMMs, DNNs have three basic advantages: (1) they have long window frames and 
can model feature context; (2) they have many nonlinear layers, with a corresponding strong capacity 
for feature transformation; (3) they model acoustic states directly, which more directly ties to the 
recognition task. The application of DNNs can significantly improve the performances of STD, as has 
been verified in a series of evaluations, most notably at OpenKWS 2013. In this paper, we try to 
generalize the use of DNNs in model training for QBE-STD systems. A DNN decoder is used to 
produce phone posteriorgrams for both the queries and audio documents.  

For the Chinese model, a DNN with 5 hidden layers was trained on 700 hours of Chinese data 
collected by the Tsinghua University Speech Technology lab. The Chinese softmax output layer has 
98 units, include 96 Chinese monophones and 2 monophones representing non-speech. For the 
English model, a DNN with 5 hidden layers and a softmax output layer with 41 units was trained on 
700 hours of English data from Switchboard dataset and Fisher dataset. More details about DNN 
model training can be seen in [11]. 

Observing specific audio signals in the data sets, we can see two characteristics that may affect 
the feature match accuracy. The first is that there are many non-speech fragments in the audio signals. 
Especially for queries, there may be non-speech segments near the beginning, middle and end of the 
signal, which can significantly affect recognition performance. Another problem is that in many 
query examples, the amount of effective audio is insufficient to represent a complete word. Using 
such audio as training templates may lead to a higher false alarm rate. 
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To solve these problems, a speech activity detection (SAD) step is necessary. Similar to the 
method given in [4], we calculate the non-speech posterior probability (the sum of phone 
probabilities representing short and long silence segments). If the non-speech posterior exceeds a 
pre-set threshold, the frame is classified as non-speech and discarded from the posteriorgram feature 
vector. After removing non-speech frames, if the number of remaining frames is still insufficient, the 
entire utterance is discarded. 

Dynamic Time Warping Search. When comparing a query posteriorgram sequence of 
length m , 1 2( , ,..., )mq q q=q ,  against a test posteriorgram sequence of length n , 1 2( , , ..., )nx x x=x , we 
use the dot product log probability  [ , ]D i j  to measure the similarity between iq and jx : 

[ , ] log( )i jD i j q x= − ⋅ .                                                                                                                         (2) 
 

The average distance between q and x is calculated as:  

1

1 [ , ]
L

l l
l

D D i j
L =

= ∑ .                                                                                                                             (3) 

where li  and lj  represent the thl alignment of the q and x  vectors. Endpoint conditions are given by 

1 1i = , li m= , 1 1j k=  and 2lj k= , 1 21 k k n≤ < ≤ . 
To find the best match of a query q against a test utterance x efficiently, we adopt the modified 

DTW search algorithm used in [4, 5]. The DTW procedure is given as follows: 

(1) Initialize the boundaries: 
i =1: 
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(2) Implement dynamic programming with a topology constraint: 

i >1: 

{( , 1), ( 1, ), ( 1, 2)}i j i j i jΩ = − − − − .                                                                                                                       (6) 
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(3) Apply end conditions i m= . 
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Fig. 1. Example of similarity matrices between a query and a test utterance. The black matrices 

show a possible crossing path. 
 
Using this algorithm, the average distance is taken from the score of the target keyword during the 

time interval [ , ]s et t , where the beginning time st  and ending time et  can be obtained from the SAD 
results corresponding to 1k and 2k . An example can be seen in Figure 1. 

The constraints imply that the path can be extended by only one frame, both in the query and in 
the test utterance. Thus, when calculating the minimum accumulated distance of a node, only the 
minimum accumulated distances of three former nodes are needed. This is guaranteed by the traversal 
order of the similarity matrices. In each test utterance, only the best 5 non-overlapping matches are 
recorded. 

Score calibration. The evaluation dataset contains queries with durations across a large range, 
collected from multiple language families and continents, as discussed in Section 3. This makes it 
difficult to determine a common decision threshold for all queries. To solve this problem and improve 
overall performance, score calibration is necessary. To accomplish this, the scores of all possible 
matches for each query are ranked and the N highest scores are retained (we choose N = 500 for these 
experiments). 

 Observing the DTW search results empirically, we find that there may be a few putative hits with 
the same ranking. To reduce the influence of test data, we calculate the scores of all other queries in 
the positions of putative hits and subtract the average score of the highest two queries: 

 
1 2, , , ,( ) / 2adjusted t q t q t q ts s s s= − + .                                                                                                                       (9) 

where ,q ts  is the raw score of the tth  putative keyword for the qth  query, and 
1,q ts and 

2 ,q ts are the 
highest two scores of all other simultaneous queries other than q . 

     A z-norm score normalization [9] for both the raw score and the adjusted score of each query is 
then implemented using: 

, ,ˆ ( ) /q t q t q qs s µ δ= − .                                                                                                                                    (10) 

where ,q ts  is the score of the tth  putative keyword for the qth  query., and qµ  and 2
qδ  are the mean and  

variance of the N-best scores for the qth  query. 
Finally, the results of raw scores and adjusted scores after z-normalization are linearly combined 

using MTWV weights. This result will be used for subsystem combination.  

Data and experimental results 
Our DTW system based on unsupervised Gaussian posteriorgrams and DNN are tested on the SWS 
2013 multilingual database [8]. The experiment uses a single example for each development query. 
The database contains 9 languages from both European and African language families. It has a variety 
of speaking styles and acoustic conditions, to evaluate the system performance across multiple 
low/zero resource conditions. 

The maximum term weighted value (MTWV) is used as performance metric: 
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( ) 1 [ ( ) ( )]Miss FATWV P Pθ θ β θ= − + ⋅ .                                                                                                                                  (11) 
whereθ is the threshold giving highest TWV, ( )MissP θ  is the term-weighted miss probability, ( )FAP θ  
is the term-weighted false alarm probability, and β  is the false alarm cost. 

Chinese/English DNN subsystem. We use the results of the 96-output Chinese DNN and 41 
output English DNN as two DNN subsystem. The MTWV results of both raw and adjusted scores, 
with and without z-norm normalization are shown in Table 1. 

Table 1. Results using Chinese/English DNN. 

  Type of scores DNN 
Chinese English 

raw 0.1175 0.1207 
adjusted 0.1704 0.1871 

raw/z-norm 0.2195 0.2232 
adjusted/z-norm 0.2178 0.2323 

raw-adjusted score fusion 0.2344 0.2527 
 
Fusion with adjusted scores. Table 1 also shows that the adjusted scores obtain better MTWV 

than raw scores. After z-normalization, raw and adjusted scores from Chinese DNN have similar 
MTWV. These are then combined to give the final subsystem, which has better MTWV than either 
types of score individually.  

Fusion of different languages. Combining the previously shown Chinese DNN-based baseline 
system with an English DNN system, Table 2 shows the final MTWV scores of the final composite 
system. The search results of both DNN models are calibrated and combined with linear fusion using 
MTWV weights, which improves the MTWV score to 0.3060. 

Table2. Fusion of different languages. 
Model MTWV 

DNN 

Chinese 0.2344 
English 0.2527 

Chinese-English 
fusion 0.3060 

 
Fusion of DNNs and unsupervised GMM. As shown in Table 3,  the result of a comparable 

unsupervised GMM subsystem is much worse than the DNN system. To combine these, the 
z-normalized GMM and DNN scores are MTWV weighted and summed. This combination yields a 
substantial additional MTWV improvement, from 0.3060 to 0.3369. 

Table3. Fusion of DNNs and unsupervised GMM. 
Model MTWV 

DNN Chinese 0.2344 
English 0.2527 

GMM 0.1790 
DNN-GMM fusion 0.3369 

Summary 
We adopt unsupervised Gaussian posteriorgram and DNN phonetic posteriorgram features as inputs 
to a DTW-based QBE system. DNN results are significantly better than comparable GMM-based 
systems, consistent with recent findings on other speech applications. We calibrate the scores with an 
N-best query approach to normalize the score range, and combine multiple normalized adjusted 
scores for best results. The combination of multiple language complementary DNN models and 
unsupervised GMM significantly improves overall system performance.  
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