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Abstract 

This paper presents an adaptive fuzzy backstepping control method that incorporates the dynamic equilibrium state 
(DES) theory to carry out path tracking for underactuated ships in presence of parameter variations and external 
disturbances induced by wind, wave and current. First, the optimal DES reference trajectories are designed for the 
sway displacement and the yaw angle. Then, by combining the DES theory with backstepping technology and using 
fuzzy logic systems to approximate unknown nonlinear functions in the system, a robust adaptive fuzzy controller 
is designed to track the prescribed trajectories. Theoretical analysis and simulation results show that the proposed 
method performs path tracking of underactuated ships with high precision, eliminates the influence of the 
uncertainties, and guarantees global stability and robustness of the system. 
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1. Introduction 

In recent years, the design of the trajectory tracking and 
the path following controllers for underactuated ships is 
one of the hot issues in many offshore applications.1 
Many remarkable results have been achieved in the ship 
straight line tracking control.2-7 However, an 
underactuated ship usually has big inertia, big time lag, 
nonlinearity and underactuated characteristics. And its 
tracking motion is strongly influenced by the model 
parameter perturbations, as well as the effects of wind, 
wave and current flow disturbances. So it is very 

necessary to design the tracking controller with strong 
robustness and high precision when there exist 
uncertainties from model and disturbance.  

Wang et al. [8-10] addressed a kind of nonlinear 
tracking design methods based on the DES theory, 
which are established on the concept of the DES 
asymptotic stability. The DES is a type of equilibrium 
states targeted at the non-free system. It is not the origin 
or a certain fixed point but the function of the input. The 
concept of DES and its stability solve the conceptual 
conflict, which results from the application of the 
Lyapunov direct method to the tracking problem. Its 
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most outstanding feature lies in the unification of the 
stability and tracking problems when the method makes 
the state of the system track its desired DES in the 
optimal way. The control scheme in Ref. 8-10 was only 
limited to the affine nonlinear systems, so this paper 
attempts to utilize this method to deal with the path 
tracking control of the underacutuated ships. The 
present paper firstly reports about the ship tracking 
control based on the DES theory. 

Wang [11] presented a foundation of the adaptive 
fuzzy control where it combines the merits of both 
conventional fuzzy and adaptive control. Now, adaptive 
fuzzy control has been an effective control method for 
the uncertain nonlinear systems.12-17 

In view of this, this paper combines the DES 
tracking approach with adaptive fuzzy backstepping 
control method to obtain the desired path tracking of 
underactuated ships in presence of parameters variations 
and external disturbances caused by wind, wave and 
current. The proposed adaptive fuzzy controller 
guarantees the stability of the closed-loop system and 
achieves the good tracking performance as well. 

The rest of the chapter is arranged as follows: 
Section 2 introduces the concept of DES theory and 
tracking approach based on it. In section 3, the 
description of an underactuated ship system with 
parameter variations and external disturbances is given 
and the ideal DES tracking trajectories are designed. An 
adaptive fuzzy controller for the path tracking of 
underactuated ships is designed in section 4. The 
simulation results are provided in Section 5. The final 
conclusion is shown in section 6. 

2. The DES theory 

The stability is the main performance index of control 
systems. But traditional stability theory targeted at the 
free system and isolated the equilibrium state from the 
input. The proposal of the DES concept opens a new 
way to study the stability of non-free systems with the 
input. The definition of a DES is as follows. 
Definition 1: Consider a control system ( , ( ), )x f x u t t , 
the steady-forced part ( ( ))ex u t  of the solution is called 
the system DES under the action of ( )u t , and is also 
called the system dynamic equilibrium ( )ex t for short.8 

The DES refers to the non-free system’s stability 
state. The introduction of the DES gives a new 

description to the dynamical relationships of the system. 
Classical control theory did not reveal the internal 
variables, but study the relationship between the input 
and the output. Modern control theory studied the 
relationships between input, state and output. The state 
space method played a key role in revealing and 
understanding many important characters of control 
systems. State controllability and observability are 
particularly important, which become two basic 
concepts of control theory. But the conceptions of state 
controllability and observability in modern control 
theory did not combine with system stability. The DES 
theory studies the relationships between the four factors: 
the input, the DES, the state and the output. The 
relationships can be shown as Fig.  1.  

From Fig. 1, it is seen that the relationship between 
the DES and the state, i.e. stability, can be revealed. The 
theory of the DES claims that what is controlled directly 
by the input of the control system is the DES rather than 
the state or the output.  When a system is asymptotically 
stable to its DES in the large, the state or the output will 
asymptotically converge to the system dynamic 
equilibrium under the constraints the system structure. 
That is the basic idea of equilibrium state control.8 

The tracking control method of the nonlinear 
systems based on the DES theory includes three 
procedures. Firstly, based on the quality index of the 
controlled systems, the linear time-invariant system 
with ideal dynamic properties is designed as reference 
model. Second, the state of the model is dealt with as 
the DES of the controlled system. Third, the control law 
is designed to make the state track to its DES, finally 
achieving globally asymptotic stability. Therefore the 
controlled systems approximately present the dynamic 
performance of the reference model, and the feedback 
linearization of nonlinear system is achieved. 

 

Fig. 1.  The relationship between input, DES, state and output 
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3. Problem statement 

Fig. 2. is the straight-line trajectory keeping control 
model for the underactuated ships.  

In Ref. 5, ship straight line trajectory keeping 
control model equation is described as follows: 
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where y ,  , r and U denote the sway displacement, 
yaw angle, yaw rate and cruise speed respectively. 
T and K  represent ship model operation index 
parameters.   is a constant parameter denoting the 
nonlinear item in the model. u  denotes the control 
rudder angle. 1  and 2  are external bounded 
disturbances.  

To simplify the design process, the following 
coordinate transformation is defined according to Ref. 5. 
Such that 

 s ky    (2) 

Where k is a positive constant. The convergence of 
s and y to zero means that of  . 

Considering Eq. (2), Eq. (1) can be simplified as 
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Let 1 ( )x y t , 2 ( )x t , 3 ( )x r t , 

1 sinf kU  ， 3
2
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then the ship model Eq. (3) can be rewritten as follows 

 1 1 3 1

3 2 2 2

s f b x

x f b u




  
   




 (4) 

In practice, because of the external disturbances, 
such as wind, wave and ocean current, the cruise speed 
is always time varying and T ， K  and   are uncertain 
parameters. Then, 1f , 2f  are unknown nonlinear 
smooth functions; 1b ， 2b  are unknown constants. 

In order to design robust adaptive fuzzy controller, 
the following assumptions are given. 
Assumption 1.  There exist positive constants imb  and 

iMb , such that 0 im i iMb b b   ， 1,2i  . 
Assumption 2.  The external disturbances are bounded, 
such that 2

i ic  . 
According to the stable state control of the DES 

theory, this paper uses the linear ship line tracking 
model to find the desired DES reference trajectories 
based on linear quadratic optimum control method.  

Let sin  ， and the nonlinear item model 
parameter  is neglected. The approximate linearization 
states equations of the ship line tracking model Eq. (1) 
are as follows: 
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Q and R are chosen according to desired 
performance index. Then the linear quadratic optimal 
feedback control law is given by 

 u  Kx              (6) 

Substituting Eq. (6) to Eq. (5) and adding input r ，
then the desired DES reference trajectories of the ship 
line tracking model can be expressed by the linear 
reference model as follows:  

 1( )d d d d dr k r    x Α x B Α BK x B  (7) 

where 1k is the first component of K . dx  is taken as 
the DES of ship line tracking control.  

We can define 1 2d d ds kx x  . ds  is taken as the 
DES of s . Then, the control objective is to make s and 

 

Fig. 2.  Ship motion coordinate system 
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3x  track their DES ds and 3dx . Finally, the tracking 
errors asymptotically converge to zero. 

4. Adaptive fuzzy backstepping control based 
on the DES 

4.1. Backstepping control based on the DES 

The backstepping procedure is an efficient design 
approach for nonlinear systems with strict feedback 
structure. It consists of a step-by-step construction of a 
transformed system with i i iz x   , where i  is the 
so-called virtual control at the step i. The virtual control 

i  , in fact , is the new DES of ix  , so the backstepping 
control method based on the DES in a sense can be 
explained by designing control law to let state to track 
and converge to its DES step by step, ultimately 
realizing global stability of the close loop system. The 
concept of virtual control is replaced with the DES, 
making the procedure more clear and easy to understand. 

The procedures of the backstepping design based on 
the DES are given as follows: 
Step 1：For the first subsystem 1 1 3 1s f b x    , the 

control law is designed to achieve state s  

asymptotically converging to its DES. Let the tracking 

error 1 dz s s  . Its derivative is 

 1 1 1 3 1

1 2 1 3 1 1

d d

d d

z s s f b x s

b z b x f s




     

    

  


 (8) 

where the second tracking error 2 3 3dz x x  . 3dx  is 

taken as the new DES of 3x . 
Define the first Lyapunov function candidate as 

 2
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  (10) 

where 1 1 1
1

1ˆ ( )df z f s
b

   . 

Let 3 1 1 1dx z    ( 1 0  ). 1̂  is a fuzzy logic 
system to approximate the 1f̂ , such that 

 2
1 1 1 1 2 1 1 1 1 1

1

1ˆ ˆ( )V z z z z f z
b

         (11) 

Step 2：The derivation of 2z is 

 2 3 3 2 2 2 3d dz x x f b u x         (12) 

Select the augmented Lyapunov  function as 

 2
2 1 2

2

1

2
V V z

b
   (13) 

Let 2 1 2 3
2

1ˆ ( )df z f x
b

   .The control law is 

formulated as 

 2 2 1 2ˆu z z     ， 2 0   (14) 

2̂  is a fuzzy logic system to approximate the 2f̂ , 

such that ： 
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Substituting Eq. (14) into above Eq. (15), we get 
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2 1 1 2 2 1 1 1
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4.2. Apative fuzzy control 

Because a fuzzy logic system has the capability of 
universal approximation for any unknown nonlinear 
functions to the desired accuracy in a compact set, two 
fuzzy estimators 1̂  and 2̂  are designed to approximate 

1f̂  and 2f̂ . A fuzzy logic system consists of four parts: 
the knowledge base, the fuzzifier, the fuzzy inference 
engine working on fuzzy rules, and the defuzzifier. The 
knowledge base for fuzzy logic system comprises a 
collection of fuzzy IF-THEN rules of the following 
form: 

( )lR ：If 1x  is 1
lF  and 2x  is 2

lF ，， Nx  is l
NF ，then 

ly G   1, 2, ,l M  . 

where 1 2[ , , ]T
Nx x xx   and y  are fuzzy logic system 
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input and output, respectively, Fuzzy sets 1
lF and lG  

associated with the fuzzy function ( )l
i

iF
x  and ( )lG

y . 

M represents the rule number. 
In this study, the fuzzy system is implemented with 

singleton fuzzification and product inference, and the 
defuzzifier is executed by the method of center of 
gravity. The input and output relation of the fuzzy 
system is obtained as11-14 

 1 1

1 1

( )

( )
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l
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l
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l i
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where max ( )l
l

y R
G y


 . ( )l

i
iF

x  is called Gaussian 

membership function of fuzzy set l
iF ; 1[ , , ]M T θ   

is the optimal parameter vector; 

1( ) [ ( ), , ( )]T
Mξ x ξ x ξ x  is a fuzzy basis vector with 

the input vector x . Then Eq. (17) can be rewritten as 
follows: 

 ( ) ( )Ty x,θ θ ξ x  (18) 

The inputs of fuzzy logic systems are designed as: 

1X s and  2 3X x .  
Let 1 2[ , , , ] , ( 1,2)T

i iX X X X i  , then 

 1 1 1
ˆˆ ( )T X  ξ ， 2 2 2

ˆˆ ( )T X  ξ  (19) 

Based on the universal approximation theorem,11-12 

the optimal fuzzy approximation *
1 1 1ˆ ( , )X θ and 

*
2 2 2ˆ ( , )X θ  are further designed to approximate the 1̂  

and 2̂ , such that 

 * *ˆ ˆ ( , ) ( ) , ( 1, 2)T
i i i i i i if X X i      θ θ ξ  (20) 

The optimal approximation parameters *
iθ  are 

defined  in the fuzzy system as follows: 
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where
i

θ and U are bounded compact sets of adjustable 
parameters iθ  and fuzzy input vector iX . i  is a 
optimal approximation error of the fuzzy logic system. 
Generally, it is assumed that the optimal approximation 
error is bounded, satisfying i i  . 

Based on the above fuzzy logic systems, the 
adaptive fuzzy backstepping law is formulated as 

 2 2 1 1 1 2 2
ˆ ˆ( ( )) ( )T Tu X X z X    θ ξ θ ξ  (22) 

The corresponding differences between the optimal 
and estimated parameters are defined ˆ *θ θ θ ，then 
the parameter adaptation laws for the fuzzy systems are 
chosen as 

 ˆ ˆ( ) 2 , ( 1,2)i i i i i ir z X k i  θ ξ θ


 (23) 

where ir  and ik are positive constants. 
The stability analysis is summarized in theorem 1. 
 

Theorem 1. Consider the actual dynamic models of the 
underactuated ships in presence of parameter variations 
and external disturbances represented by Eq. (1). The 
ideal dynamic equilibrium states reference trajectories 
are designed as Eq. (7). IF the adaptive fuzzy 
backstepping control law is designed as Eq. (22) with 
the adaptation laws showed in Eq. (23), then the 
stability of the entire adaptive fuzzy control system can 
be guaranteed. The parameter îθ  of the fuzzy logic 
system will remain bounded, and the tracking errors 
asymptotically converge to a neighborhood of zero. 
 
Proof. Define the second Lyapunov function candidate 
as  
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We define  
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Substituting Eq. (27) into Eq. (25), then one can 
obtain 
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the adaptation laws for two fuzzy estimators are chosen 
as Eq. (23)，Eq. (28) can be rewritten as follows: 
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Substituting Eq. (30) into Eq. (29), we get 
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Because 
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Substituting Eq. (33) into Eq. (31) and considering 
the assumption  1, Eq. (31) can be rewritten as follows: 
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2

2
0

1

1

2 i
i

c c


   (37) 

then 

 

2 2
2

0 0 0
1 1
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1 1
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2 2
T

i i i
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b r

a V b c
 

    

  

  θ θ 

 (38) 

The general solution of Eq. (38) can be represented 
as 

 

0 0 0 0
0

0 0

0 0
0

0

0 0

0

( ) ( (0) )exp( )

(0)exp( )

(0) , 0

b c b c
V t V a t

a a

b c
V a t

a

b c
V t

a

 
   


  


     (39) 

where (0)V  is the initial value of V . 

Define a compact set  0 0( )X V X C   , where 

0 0
0

0

(0)
b c

C V
a


  . From Eq. (24), we can come to the 

conclusion that the all signals of the close loop system 

are bounded, i.e. 1 2 1 2 0( , , , )Tz z θ θ  . 

5. Simulation results 

In this section, some numerical simulations are 
performed to illustrate the effectiveness of our proposed 
control laws given by Eq. (22) and Eq. (23). 
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Let the input fuzzy variables 1X and 2X  be fuzzily 
partitioned into nine fuzzy sets, Negative Very Big 
(NVB), Negative Big (NB), Negative Medium (NM), 
Negative Small (NS), Zero (Z), Positive Small (PS), 
Positive Medium (PM), Positive Big (PB) and Positive 
Very Big (PVB). For simplicity, the means of the 
Gaussian functions are set at -2, -1.5, -1, -0.5, 0, 0.5, 1, 
1.5 and 2, respectively, and all the standard derivations 
of the Gaussian membership functions are set at 1. 
However, no matter how many rules are activated, the 
fuzzification and defuzzification processes will derive 
the right control power when the fuzzy sets are sensible. 
Their values will be tuned online. So, the overlap region 
of fuzzy sets will not impact the performance of the 
controller.17 

The Gaussian membership function of fuzzy sets 
can be defined as16 

  

2( ) exp[ 0.5( ( 5)*0.5) ]

1, 2 1,2, ,9

l
i

i iF
X X l

i l

    

     (40) 

Then： 
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1
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1 9

11

( )
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X
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X


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ξ  (41)          

 1 2
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2 9

1 21

( ) ( )
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j j

j j

F F

F Fj

X X
X

X X

 

 





ξ  (42) 

The Gaussian membership function of iX  can be 
shown as Fig. 3. 

 
 
 
 
 
 
 
 

Fig. 3   The Gaussian membership function of iX  

The ship parameters are taken from Ref. 5 as 
follows: 8U  , 0.4963K  , 208.91T  , and 30  . 
The cruise speed variation is 0.2sin(2 )U t  . The 
initial condition for 0y , 0  and 0r  are 

 0 50 0.2 0x .The design parameters of the 
controller are: 1  , 1 20  , 2 300  , 0.002k  , 

1 2 2k k   and 1 2 1.5r r  。 
The four different cases are chosen as follows:  
(i) If the stable time of the DES paths is set to be 

200s, one can choose the weighting matrix of LQR for 
Eq. (7) as 1R  ,  1 1 0diagQ . By calculation we 
obtain  1 4.42 1.1705K . The desired outputs are 

500dx m , and 00d  . External disturbances are 
chosen random signals and signal intensity is two times. 
The simulation results are shown in Fig. 4. 
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(e)  

 
 
 
 
 

 
                (g)                                           (h) 

Fig. 4.  Simulation results of the DES path tracking in case I. 
(a) sway displacement (b) yaw angle (c) yaw rate (d) control 
rudder angle (e) 1  (f) 2  (g) 1f and estimated 1f  (h) 2f and 
estimated 2f  
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Fig. 4 illustrates that the sway displacement y  and 
the yaw angle   can realize global asymptotic tracking 
under the action of control rudder angle in presence of 
parameters variation and random external disturbances. 
The tracking errors converge to zero at 200s.  

(ii) If the stable time of the DES paths is shorten to 
150s, one can choose 1R  ,  10 5 1diagQ . By 
calculation we obtain  3.1623 8.4275 1.3047K . 
The desired output are： 

300 ,0 250

500 ,250 500
d

d

x m t s

x m t s

  
    . 

The external disturbance signals are chosen as 

1( ) 0.4sin( )t t   and 2 ( ) 0.8sin( )t t  . The 

simulation results are shown in Fig. 5. 
 
 
 
 
 
 
 
 
                     (a)                                            (b) 
 
 
                     
 
 
 
 
                      (c)                                         (d) 
                     (c)                                          (d) 
 
 
 
 
 
 
 
 
                     (e)                                            (f) 

Fig. 5.  Simulation results of the DES path tracking in case II. 
(a) sway displacement (b) yaw angle (c) yaw rate (d) 
control rudder angle (e) 1f and estimated 1f  (f) 2f and 
estimated 2f  

From Fig. 5, it is concluded that the sway 
displacement and the yaw angle can rapidly adjust and 
track the new desired paths when the desired paths are 
changed suddenly at 250t s  . 

(iii) External disturbances are chosen pulse 
interferences added at 200s, 300s and 400s respectively. 
The pulse amplitude is 2 s .The simulation results are 
shown in Fig. 6. 

Fig. 6 shows that the sway displacement and yaw 
angle can rapidly adjust when there exist the pulse 
interferences, and the tracking control precision is also 
high. To compensate for the pulse perturbation, the 
control rudder angle changes around 5 degrees. 
Contrasted with Ref. 2 and 5, current disturbance 1  
was not considered in Ref. 2 and 5, so the controller 
can’t resist the error of the sway displacement induced 
by the current disturbance. 
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Fig. 6.  Simulation results of the DES trajectories tracking in 
case III. (a) sway displacement (b) yaw angle (c) yaw rate 
(d) control rudder angle (e) 1f and estimated 1f  (f) 2f and 
estimated 2f  

(iv) In order to verify the strong robustness of the 
proposed adaptive fuzzy control method (AFC), the 
adaptive dissipative control method (ADC) in Ref. 5 is 
chosen to compare with it. The ideal DES paths and 
uncertainties are chosen in case (i). The simulation 
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results of two approaches are demonstrated in Fig. 7. 
Solid lines represent the curves of the ideal DES paths; 
dashed lines represent that of the AFC method; 
dashdoted lines represent that of the ADC method. 

 
 
 
 
 
 
 
                    (a)                                            (b) 
                     
 
 
 
 
 
 
                   (c)                                            (d) 

Fig. 7.   Comparison of the two methods in case I. (a) sway 
displacement (b) yaw angle (c) yaw rate (d) control rudder 
angle 

It is clear that the stable time is about 200s in the 
proposed control method while it is about 300s in the 
adaptive dissipative method for same ideal the DES 
paths. The fluctuation of all state variables and 
overshoot become bigger than that of the proposed 
control methods. One can find that the proposed method 
has the stronger robustness and the adaptability to the 
uncertainties. 

As is shown above, the proposed scheme is effective 
and robust, and the control rudder angle is reasonable. 

6. Conclusions 

An adaptive fuzzy backstepping control approach based 
on the DES theory is proposed for path tracking of the 
underactuated ships. The ideal DES reference paths are 
designed by LQR control approach. By combining the 
DES tracking control method with the backstepping 
technology, the virtual control is treated as the DES and 
the original concept of the virtual control is got rid of so 
that it is easier to understand the control design. The 
numerical simulation results indicate the effectiveness 
and robustness of the proposed controller. Compared 

with the adaptive dissipative method, it is clear that the 
proposed adaptive fuzzy control approach is more 
efficient in performing path tracking in presence of 
parameters variation and external disturbance.  
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