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Abstract 

State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design methods for nonlinear 
controllers. A nonlinear optimal guidance law with impact angle constraint is derived for planar engagements to 
attack stationary targets. The guidance problem is formulated as an infinite horizon nonlinear regulator problem 
whose equilibrium state is zero. It is solved by SDRE technique and the state weight matrix is chosen as a function 
of time-to-go. Performance of the guidance law is tested numerically with different initial firing conditions for a 
realistic GPS/INS guided artillery rocket model with low available lateral acceleration. A reasonable launch angle 
is helpful to reduce the control effort, and it is acquired by trajectory optimization using genetic algorithm. Results 
show negligible errors for miss-distance and the desired impact angle. The proposed guidance law is a choice for 
the guided artillery rocket. 
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1. Introduction 

State-dependent Riccati equation (SDRE) approach is a 
promising technique for designing controllers for 
nonlinear systems. Various SDRE design methodologies 
have been successfully applied to aerospace problems. 
SDRE-based design procedures have been used in 
advanced guidance law development, in output 
feedback autopilot designs (nonlinear 2H ), and in full 
information nonlinear H∞  autopilot designs. 

In many advanced guidance application, impact angle 
constraint is required to enhance the effect of the 
warhead and increase its kill probability. For example, 
deep penetration of ground based targets requires 
vertical impact. A good guidance law is especially 
crucial for guided artillery rockets with impact angle 
constraint because they can only provide low available 
lateral acceleration, and traditional guidance laws such 
as proportional navigation, prediction of impact point, 
are not adaptable. 
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In this paper a nonlinear optimal guidance law with 
impact angle constraint is derived for planar 
engagements to attack stationary targets. The control 
problem is formulated as an infinite horizon nonlinear 
regulator problem whose equilibrium state is zero, and 
is solved by SDRE technique with time varying state 
weight matrix. Then the guidance law is applied to 
simulations of a GPS/INS guided artillery rocket with 
different initial firing conditions. 

2. SDRE Nonlinear Regulation 

Consider the general autonomous infinite-horizon 
nonlinear regulator problem of the form: Minimize 

 
0

1 ( ) ( )
2

T T

t
J dt

∞
 = + ∫ x Q x x u R x u  (1) 

with respect to the state x  and u  subject to the 
nonlinear differential constraint 

 ( ) ( )f g= +x x x uɺ  (2) 

where nR∈x , mR∈u , ( ) ( ) ( ) 0T= ≥Q x C x C x , and ( )R x > 
0 for all x . Here it is assumed that (0) 0f =  and 

( ) 0g ≠x  for all x . We seek stabilizing approximate 
solutions of problem (1)-(2) of the form ( )φ=u x  where 
φ  is a nonlinear function of x .  
It is well-known that the nonlinear dynamics (2) can be 
represented by the following linear structure having 
state-dependent coefficients (SDC):  

 ( ) ( )A B= +x x x x uɺ  (3) 

where  

 ( ) ( )f A=x x x , ( ) ( )B g=x x  (4) 

The SDRE approach for obtaining a suboptimal solution 
of problem (1)-(2) is:  
• Use direct parameterization to bring the nonlinear 
dynamics to the SDC form (3). 
• Solve the state-dependent Riccati equation  

 1( ) ( ) ( ) ( ) ( ) ( ) 0T T−+ − + =A x P PA x PB x R x B x P Q x  (5) 

to obtain 0≥P . Note that P  is a function of x .  
• Construct the nonlinear feedback controller via  

 1( ) ( ) ( )T−= −u R x B x P x x  (6) 

 

3. Optimal Guidance Law Based on SDRE 

Consider missile’s flight in the pitch plane, it attacks a 
stationary target on the ground, as shown in Figure 1. At 
a time t during flight, (x, y) is the missile coordinates, V 
is the missile velocity, θ  is the missile heading angle, r 
and q are the line of sight separation and angle 
respectively, and na  is the lateral acceleration. The 
expected coordinates of the impact point is ( Tx , Ty ), and 
the expected impact angle is fθ . 

 

Fig. 1.  Missile’s flight path in the pitch plane. 

Next, an optimal guidance law is deduced according to 
state-dependent Riccati equation. It assumes that the 
missile velocity V is constant within the deduction. 

3.1.  State Space Equations 

In order to obtain analytic solutions of the optimal 
control problems, low-order state equations should be 
adopted. At the terminal time, it is expected that fθ θ= , 

0r = , and fq θ= . To make states of the system tend to 
zero, we choose the following state space variables  

 1

2 sin( )
f

f

x

x r q

θ θ
θ

−  
= =    −    

X  (7) 

Find the derivative of state variables  

 1 ( ) n
f

a
x

V
θ θ θ′= − = =ɺɺ  (8) 

 2 [ sin( )] sin( ) cos( )f f fx r q r q rq qθ θ θ′= − = − − −ɺ ɺ ɺ  (9) 

As shown in Figure 1, for the case of attacking 
stationary targets, the following equations established  

 cos( )r V qθ= − −ɺ  (10) 

 sin( )V
q q

r
θ= − −ɺ  (11) 
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Using (10) and (11) in (9), reorganize it, we have  

 2 sin( )fx V θ θ= −ɺ  (12) 

According to equations (8) and (12), we can get the 
state space equations  

 1

2 1

/
sin

na Vx

x V x

  
= =   
   

X
ɺ

ɺ

ɺ
 (13) 

3.2. Pseudo-linear Transformation of Nonlinear 
Equations 

The nonlinear system can be transformed into pseudo-
linear structure in form of (3), here  

 1

1

0 0
( ) sin 0
X V x

x

 
 =
 
  

A , 
1

0
V
 
 =
 
 

B , na=u  (14) 

Consider the general infinite-horizon nonlinear regular 
problem whose state of equilibrium is zero: Minimize (1) 
with respect to X  and u  subject to (3). Here Q  and R  
are the state weight matrix and the control weight 
matrix respectively. Also, they are two design 
parameters available for getting the desired control.  
Here we take  

 1R =  (15) 

 
2
1

2
2

0
0
q

q

 
=  
 

Q  (16) 

where 1q  and 2q  is some function of time-to-go ( got  ) so 
as to include the target information in the guidance logic. 
When the missile is far away from the target, that is got   
is large, 1q  and 2q  have a relatively small value, so that 
state variables are permitted to deviate from zero. While 
the missile is close to the target, that is got  is small, 1q  
and 2q  have a relatively large value, so that the state 
variables tend to zero to meet the terminal constraints. 
As the missile moving toward the target, its motion 
states gradually comes close to to the terminal 
constraints.  
It can be verified that this optimal control problem meet 
the conditions of SDRE. According to optimal control 
theory, we can get the following optimal control  

 * 1 ( )T−= −u R B P X X  (17) 

minimize the function J , and the symmetric positive 
definite matrix ( )P X  is the solution of the following 
state-dependent Riccati equation  

1( ) ( ) ( ) ( ) ( ) ( ) 0T T−+ − + =A X P X P X A X P X BR B P X Q  (18) 

3.3. Solving SDRE 

Let 

 11 12

12 22

p p

p p

 =  
 

P  (19) 

Using (14), (15), (16), (19) in (18), we have  

 2 2 1
11 1 2

1

sin2 x
p V q q V

x
= ⋅ +  (20) 

 12 2p q V=  (21) 

 2 21 1
22 2 1 2

1 1

sin2
sin
x x

p q q q V
V x x

= ⋅ ⋅ +  (22) 

3.4. Nonlinear Feedback Control 

Using (19) ~ (22) in (17), we can get the SDRE control  

* 2 2
2 1 2

sin( )
sin( ) 2 ( )f

f f
f

u q r q q q V
θ θ

θ θ θ
θ θ

−
= − − − + ⋅ −

−
(23) 

Because we are interested only in terminal value of θ  
instead of the intermediate ones we want no running 
cost on it. We have  

 1 0q =  (24) 

We choose 2q  to be a function of time-to-go as  

 2
2 ( )

go

N
q

t
=  (25) 

Here N is a positive constant. Using (24) and (25) in 
(23), and adding the gravity compensation term, we get 
the SDRE nonlinear regulator guidance command as  

2

* sin( )f
go

N
u r q

t
θ

 
= − −  

 
 

 
sin( )2 ( ) cosf

f
go f

NV
g

t

θ θ
θ θ θ

θ θ
−

− ⋅ − +
−

 (26) 

Application of this guidance law needs measure the 
following parameters: missile velocity V, heading 
angle θ , line-of-sight separation r and angle q. In 
addition, time-to-go got  needs to be estimated. 
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4. Simulations for Guided Artillery Rocket 

The guidance law is deduced in (26) assumes constant 
velocity dynamic model given by (13). For simulations 
we use a realistic GPS/INS guided artillery rocket 
model as a point mass.  

4.1. Modeling of Guided Artillery Rocket 

Equations of motion are as follows,  

 

cos sin

sin cos

cos
sin

B

B B

P D
V g

m
P Y

g
m

V
x V

y V

α θ

α θ
θ

θ
θ

− = −


+ −
 =

 =
 =

ɺ

ɺ

ɺ

ɺ

 (27) 

D is the drag force 

 ( )0 0i d di di zD D D D QS c c cα δ
δ α δ= + + = + ⋅ + ⋅  (28) 

BY  is the lift force 

 ( )B l l zY Y Y QS c cα δ
α δ α δ= + = ⋅ + ⋅  (29) 

Q is the dynamic pressure 

 21
2

Q Vρ=  (30) 

ρ is the atmospheric density, V is the missile speed, S is 
the characteristic area, α  is the attack angle, zδ  is the 
canard deflection angle, 0dC , diCα  and diCδ are the drag 
coefficients,   LCα  and LCδ  are the lift coefficients. 
Based on transient equilibrium hypothesis, we have  

 B zKαδα δ= ⋅  (31) 

The flight Mach number 

 
a

V
M

V
=  (32) 

The atmospheric density is given by 
14 3 9 2 4( ) 4.14 10 3.74 10 1.15 10 1.223h h h hρ − − −= − × ⋅ + × ⋅ − × ⋅ +

(0 30000 )h m≤ ≤    (33) 

Speed of sound is given by 
8 2 3

4

2.51 10 3.82 10 340.3 (0 11000 )
( ) 295.07 (11000 20000 )

6.68 10 281.7 (20000 30000 )
a

h h h m

V h h m

h h m

− −

−

− × ⋅ − × ⋅ +   ≤ <
=   ≤ <
 × ⋅ +   ≤ <

 

(34) 

As the guided artillery rocket for simulations, mass and 
thrust are given by 

 
282 24
160

t kg
m

kg

−   
=    

 
(0 5 s)
( 5 s)

t

t

≤ ≤  
>   (35) 

3 2 4 4

4 2 5 5

5 2 6 6

8.48 10 1.90 10 7.38 10
4.74 10 3.60 10 7.46 10
1.47 10 1.42 10 3.44 10
0

t t N

t t N
P

t t N

 × ⋅ − × ⋅ + ×  


× ⋅ − × ⋅ + ×  = 
× ⋅ − × ⋅ + ×  




 

(0 3.07 )
(3.07 4.13 )
(4.13 5 )
( 5 )

t s

s t s

s t s

t s

≤ <
≤ <
≤ <

≥

 

(36) 

The drag coefficients and lift coefficients are 
determined by  

 2
0

2

0.09 0.27
0.94 2.49 1.11

0.03 0.24 0.79
d

M

C M M

M M

+
= − + −
 − +

 
(0.4 0.9)
(0.9 1.53)
(1.53 4)

M

M

M

≤ <
≤ <
≤ ≤

 (37) 

 0.11 0.95diC Mα = − +  (1 4)M≤ ≤  (38) 

 0.046 0.35diC Mδ = − +  (1 4)M≤ ≤  (39) 

 0.83 9.43LC Mα = − +  (1 4)M≤ ≤  (40) 

 0.22 0.12LC Mδ = − (1 4)M≤ ≤  (41) 

Other parameters are given by  

 0.14 0.036K Mαδ = + (1 4)M≤ ≤  (42) 

 h y=  (43) 

 S = 0.04 m2 (44) 

The rocket’s position coordinates ( , , )x y z  and velocity 
( , , )x y zV V V  during flight can be obtained in real time by 
the integrated GPS/INS navigation system.  Parameters 
needed for the SDRE guidance law can be calculated as  

 2 2
x yV V V= +  (45) 

 
2 2

arcsin y

x y

V

V V
θ

 
 =
 + 

 (46) 

 2 2( ) ( )T Tr x x y y= − + −  (47) 

 arcsin Ty y
q

r

− =  
 

 (48) 
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( )
( )

/ , / 2

2 / , / 2go

r r r V
t

r V r V

− >= 
≤

ɺ ɺ

 (49) 

4.2. Simulations 

All the simulations, unless specified, are terminated at a 
closing distance of ≤ 0.1 m and the corresponding 
impact angle errors are less than 10-3 degrees. 
Maximum canard deflection angle limit for the rocket is 
taken to be ±24°.The guidance loop is closed after the 
boost phase of the thrust profile at t = 6 s.  
Consider the following engagement parameters as 
shown in Table 1. Case 1 is an unguided trajectory with 
launch angle at 42.63°, while Case 2 and Case 3 are 
SDRE guided trajectories with launch angle at 42.63° 
and 43.9° respectively. 

Table 1.  Simulation cases. 

Parameter Case 1 Case 2 Case 3 
Guidance Law Unguided SDRE SDRE 

(xT,yT) (60000,0) (60000,0) (60000,0) 
θf / -90° -90° 
N / 2.5 2.5 
θ0 42.63° 42.63° 43.9° 

 
The trajectories are plotted in Figure 2. The 
corresponding control history is shown in Figure 3. 
Results of both Case 2 and Case 3 show successful 
interception of target with the desired impact angle. We 
can also see that a reasonable launch angle is helpful to 
reduce the control effort. 

 

Fig. 2.  Trajectories for diffirent cases. 

 

Fig. 3.  Lateral accelerations for diffirent cases. 

The canard deflection angle profiles in different cases 
are plotted in Figure 4. Results shown that although the 
needed lateral acceleration is not high (＜0.5 g ) during 
flight at high altitude (above 15 km),  the available 
lateral acceleration of the rocket is also not enough. The 
main reason is that the density of air is very low at high 
altitude and ability to maneuver the rocket is limited. 

 

Fig. 4.  Canard deflection angle profiles. 

4.3. Optimization of the launch angle  

In order to reduce the control effort, a most reasonable 
launch angle corresponding to a specific range should 
be found. We compute the integral control effort (CE) 
corresponding to different values of θ0 as  

 
0

2ft

nt
CE a dt= ∫  (50) 

The optimal launch angle can be acquired by trajectory 
optimization, and here genetic algorithm is used. The 
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result is plotted in Figure 5. We can find that when θ0 = 
43.9°, the control effort is minimum for the range of 60 
km. 

 

Fig. 5.  Integral control effort vs. launch angle. 

5. Conclusions 

A nonlinear optimal guidance law is proposed for 
intercepting stationary targets with terminal impact 
angle constraint. The guidance problem is formulated as 
an infinite horizon nonlinear regulator problem whose 
equilibrium state is zero, and is solved by state-
dependent Riccati equation (SDRE) technique. The state 
weight matrix is chosen as a function of time-to-go for 
the design. The performance of the guidance law is 
tested numerically for a realistic GPS/INS guided 
artillery rocket model. Simulations are carried out for 
different initial firing conditions. Results show 
negligible errors for miss-distance and the desired 
impact angle. The proposed guidance law is a choice for 
the guided artillery rocket. 
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