

Distributed Stream Processing of RNN Query in Mobile Computing
Siqi Xu1, Changqing Ji1, *, Yanran Zhuang1, Sunying Gao1,

 Nianpeng Yang1, Jingguo Yan2, Xin Zhang3

1 School of Physical Science and Technology, Dalian University, Dalian, 116622, China

2 School of Information Engineering, Dalian University, Dalian, 116622, China
3 School of Mechanical Engineering, Dalian University, Dalian, 116622, China

Email: jcqgood@gmail.com

Keywords: Reverse Nearest Neighbor, Big Data, MapReduce, Cloud Computing

Abstract. Reverse Nearest Neighbor (RNN) queries are a pipeline of complimentary problems, and
have aroused a vast concern in the world in the past few years, such as location based services,
profile based marketing, resource allocation and traffic monitoring system etc. Now the one of the
most important disadvantages for the RNN is that it has inherent sequential nature and using for
memory algorithm, which limits its use in data processing of large scale spatial data queries.
Scalable algorithms for Reverse Nearest Neighbor queries in distributed environment are the key
problem in this paper. First of all, we investigate the SRNN initialization query method based on
the inverted grid index. Then, Eager-SRNN has effective treatment on the problem of the scalable
Multi-dimensional RNN. Eager-SRNN tries to prune spatial objects step by step as soon as they are
accessed. Beyond that, SRNN algorithm is the first attempt for the exact scalable RNN algorithms
in a distributed environment on multi-dimensional datasets. An evaluation which we proved
through a lot of experiments has been widely applied on the new method of the synthetic data
scalability and the performance.

Introduction
In recent years, smart phones, laptop and tablets remarkably have started to carry sensors like

GPS, RFID, Camera and Bluetooth, etc [1]. Because of the large scale spatial data are increasing
rapidly, it makes people worried when they want to analyze the centralized algorithms or
computations on large volumes of multi-dimensional spatial data. Therefore, the distributed
algorithms for spatial data processing which will remove people worries, so there is an urgent need
in the contemporary [2].

As a typical spatial query algorithm, RNN query retrieves the objects whose nearest neighbors
include the query point q which is a typical spatial query algorithm. It has been welcomed by
intelligent navigation, modern communications, traffic control, profile based marketing, resource
allocation and other areas [2]. In order to make it easy to understand, we cite a simple example, if a
restaurant wants to attract more crowds and obtain higher profit, it will change its service to cater to
more customers [3].

This paper expands on the basis of an earlier published conference papers [2], [5] and [7] in
several substantial aspects. At first, Eager-SRNN, a new optimization strategy is proposed. In
Eager-SRNN, we attempt to prune spatial objects as soon as they are visited. Second, we propose an
accurate and complete proof of correctness for the SRNN algorithms. Third, compared with the
state-of-the-art algorithms, the SRNN is equally complex. At last, in order to evaluate the
performance of our proposed algorithms objective and correctly, we added more experiments.

Related Work
After the development over the years, the way to solve the exact RNN query through

technologies has evolved from doing a linear search of all spatial objects. Korn et al, firstly [3]

 * Changqing Ji is corresponding author.

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 511

http://dict.youdao.com/w/mechanical/
http://dict.youdao.com/search?q=engineering&keyfrom=E2Ctranslation

defined the RNN query. As a hotly debated issue attracted many researchers’ attention. The R-tree
index such as KM [3], it is not perfect, because it cannot guarantee the results no omissions. TPL
relies mainly on recursively filtering the data by finding perpendicular bisectors between the query
point and its nearest object [4]. Therefore, it needs to overcome a lot of difficulties to study to make
the RNN algorithms scalable in a distributed environment.

Due to the central single node has no or very few computation and storage capability. One way
to solve large scale RNN query is to use multiple machines simultaneously, and perform the spatial
index and query in distributed [5]. At present, MapReduce[1] is caused by the enthusiasm of the
people as a popular alternative for massive-scale parallel data analysis in shared-nothing clusters [6].
Each MapReduce job consists of two stages: Map function and Reduce function.

Guoren Wang et al. proposed the design and evaluation of ComMapReduce which improve the
MapReduce framework with lightweight communication mechanisms, supporting applications for
large scale datasets [8].

In this paper, our goal is to propose a scalable approach that enables efficient processing of
large-scale, accurate and multi-dimensional spatial RNN named SRNN (Scalable Reverse Nearest
Neighbor).

Handing Scalable RNN Query
In this Section 3.1, we give a definition of SRNN firstly. Then, we describe Eager-SRNN for

continuous MapReduce jobs over data streams. A Scalable Reverse Nearest Neighbor query is
formally defined as below:
 Definition 1

Scalable Reverse Nearest Neighbor query (SRNN): Given a large set of spatial objects P in an
n-dimensional large scale space D and a query object q, SRNN query is distributed to retrieve all
the objects Pp ∈ which have q as their nearest neighbors (NN). Formally,

{ }),(),('qpDistqpDistPpSRNN <∈= , where Dist() is a distance metric and 'p is arbitrary
point in P in addition to p.

In Lazy-SRNN query process [5], the verification step cannot fetch the output of a filter step
until it has finished executing and committed its final output to disk. So, we have to wait for a long
time until all of the results are displayed, which not only wasting our time, but also we cannot find
our mistakes through the processing. In this section, we present an improved algorithm for
incremental and support online aggregation of scalable Reverse Nearest Neighbor queries
(Eager-SRNN, for short). Although SRNN can stream quite directly using modified version of the
MapReduce framework such as MapReduce Online [9] and Yahoo’s Open Sourced S4 [10] etc.
They can only be used for share-nothing system that is not what we wanted. We need a new
streaming system to support global RNN pruning.

Firstly, in filter step, we recall the PCT algorithm to find a partial result of the nearest neighbors
of a query point q in each map round by round. We also use pre-clustering based inverted grid index
to eliminate nodes that may lead to RNN results. The radius starts from a small non-null value as
the initial and shrinks when the completeness is improved through iterations (the number of objects
we examine within the radius remains roughly the same). If candidate kNN is found when some
rounds finished, we eliminate some data points that have no influence on the result through
half-space pruning. The Eager-SRNN algorithm initializes a kNN list cndL by inserting the pruned
kNN result objects. Then, we will immediately send the intermediate result set cndL to reducer and
run next round continually with no pause. When reducer gets the cndL , we could call verification
step to get the points ip are the real RNN of q. Note that in Lazy-SRNN, and a reduce task cannot
fetch the output of a filter task until the filter has finished executing and committed its final output
to disk. So the results which are worked out by the SRNN presented to the user as soon as possible.

512

Algorithm 1 Eager-SRNN
Input: Inverted grid index G ,Query point q , cni Sp ∈
Output:)(qSRNN //the SRNN of query point q
1: Filter():
2: Initialize set),,(kqGPCTScnd =
3: Initialize GTG =
4: while ∞>TG do
5: for each point cndi Sp ∈ do
6:),,(ipqTGplanesTrimHalfTG −=
7: if),(qpp ii ∈⊥ then
8: { }icndcnd pSS −= //pruned point
9: end if
10: end for
11: end while
12:)(icnd paddL
13: return cndL
14: Verification()
15: Verification():
16: for each point cndi Lp ∈ do
17: if),,(kpGPCTq i∈ then
18: { }icndcnd pLL −= //false hit
19: end if
20: end for
21: return cndL

In addition to reduce many points by introducing the half-plane pruning just like Lazy-SRNN,
our Eager-SRNN query method can also be parallel just like a stream. For example, as shown in
Figure 1(a), in first round any point in),(1 qp⊥ and),(4 qp⊥ like 572 ,, ppp and 6p can be pruned by
half-pruning. So we get the partial candidate results of NN of q are 1p , 4p and will immediately
send the middle result set { }41 , ppLcnd = to reducer. In Verification step, upon testing for their
nearest objects, it turns out that only 1p and 3p are reverse nearest neighbors while 4p , has 6p
as its nearest object since distance <),(46 pp distance), 4pq（ the dotted circles in Figure 1(b)).
Finally, Reduce outputs results set which is{ }),(ipq as early returns to users. Then, in mapper we
run next round continually with no pause and only consider the points in the unpruned area and find
the nearest neighbor of q in the next pruning. As shown in Figure 1(c), we find 3p as a NN of q in
the second round. We send it to reducer and call parallel verification to get the point 3p are the real
RNN of q as latterly returns to users. The termination of condition of pruning is that there are no
points in unpruned area. As a result, { }31 ,)(ppqSRNN = undergone several different phases
continually.

513

 (a) Filter-1 (b) Verification-1&Filter-2 (c) Verification-2 (d) Divide-Conquer

Figure 1. Illustration of Eager-SRNN

Analytical Comparison of Eager-SRNN Algorithms
The following formulas define the equations of our cost-based optimization of SRNN. The

parallel processing for SRNN is:
In the map phase, m mappers process mS bytes of data. The majority of the extra time spent is

related to reading the input data from disk. sD is the average bytes/sec. That data of MapReduce
task (mapper or reducer) can deal with local disks. mS bytes of data will be read in parallel by
mappers, which are able to read sD bytes per second each.

Then in the shuffling phase, SS bytes of data are shuffled to r reducers. The majority of the
shuffling cost is related to shipping the data between distinct machines through the network. rD is
the ratio of data actually shipped between distinct machines relative to the total amount of data
processed. Thus, the total amount of data to be shipped is rcnd DS ⋅ bytes. The data will be received
in parallel by reducers, each one receiving in average sN bytes per second.

In the reduce phase, bytes of data are analyzed by r reducers. The reducers will read from
disk s bytes in parallel at the individual cost of bytes per second.

Thus, we can get the formula (1),

),(),(),()(cndcndm SrCostRSsCostSSmCostMqS ++=
s

cnd

s

rcnd

s

m

Dr
S

Nr
DS

Dm
S 111

⋅+⋅
⋅

+⋅=

)111(1

sS

r
cnd

m

s DrNr
DS

m
S

D
⋅+⋅⋅+⋅= (1)

Because the same computing environment, we set the parameters, m, rD , r, sN , sD , to the same
value in all of the SRNN algorithms. Therefore, we can combine part of the same parameters into
α , β and we can get the formula (2),

βα ⋅+⋅⋅= cnd
s

m S
D

SqS 1)((2)

Theorem 1
)()()(qSqSqS ELB << , where BS , LS , ES are the cost of Basic-SRNN, Lazy-SRNN and

Eager-SRNN algorithms respectively.
Proof
In Basic-SRNN, formula (2) are directly used because it is not optimized,

 βα ⋅+⋅⋅=
cnd

S

B
B

mB S
D

SqS 1)((3)

Similarly, in Lazy-SRNN, And in Eager-SRNN.
Using the half-plan pruning method in Lazy-SRNN can cause the processing efficiency of

SBD in
Map step is greatly increased. And Eager-SRNN not only uses half-plane pruning, but also saves

514

intermediate results in the distributed cache rather than in the disk. Thus,
SED is the biggest of them.

That is,
SSS BLE DDD >> .

cndBS is the biggest because all of the neighbors around q are the
candidate set in the Basic-SRNN. Lazy-SRNN may get additional candidate objects which are not a
reverse nearest neighbor in filter step of SRNN, while Eager-SRNN using global pruned
information to filter the unpromising data. Therefore, we find

cndcndcnd BLE SSS << . In addition,
candidate result data set is much less than the original input data set in SRNN, Thus, we can get,

βα ⋅+⋅⋅
cnd

S

B
B

m S
D

S 1
< βα ⋅+⋅⋅

cnd
S

L
L

m S
D

S 1
< βα ⋅+⋅⋅

cnd
S

E
E

m S
D

S 1 (4)

That is,)()()(qSqSqS ELB << .

Experimental Study
In this section, we experimentally evaluate the performance of SRNN for one type of Basic and

two types of optimization strategies. And we compare SRNN against the state-of-the-art algorithm
for RNN queries TPL [4] in non-distributed environment.

We set up a cluster of 32 commodity PCs in 100M high speed Gigabit Ethernet, each of which
has a Dual Core AMD 2.00 GHz CPU,73GB of SCSI hard drive, 8GB memory, network and
Ubuntu10.10 server OS. We use Cloudera Hadoop 0.20.2 and compile the source codes under JDK

1.6. One TaskTracker and DataNode daemon run on each slave. A single NameNode and
JobTracker run as the master.DFS chunk size is 64 MB.

We used the real-world data set (RDS) in our experiments is the taxi GPS data with traffic
conditions of Shenzhen City [11], it includes approximately 180,000,000 data points, and the raw
data was about ten gigabytes before decompression. We used a subset of 1,800,000 data points in
our experiments, where each data point represents a breaking behavior of tracking vehicle, and each
data point contains seven dimensionalities.

In this experiment, we compare the native Basic-SRNN and optimized Lazy-SRNN and
Eager-SRNN algorithms. Figure 2 shows the performance of change data size and cluster size to
evaluate SRNN query. From that we can find the performance of Lazy-SRNN and Eager-SRNN is
improved significantly, because SRNN algorithms have half-space pruning filter some data points
and MapReduce parallel to improve the scalability of query processing. And in Figure 2(a), we can
find Basic-SRNN may go through some nodes that can be pruned and subsequently, access most of
the spatial space. When the Lazy-SRNN and Eager-SRNN increase the shuffle phase of reducing
task, the performance is improved greatly as shown in the Figure 2(a). When the objects number is
1.8 × 10 6, the execution time of Lazy-SRNN is 5 times less than Basic-SRNN.

 (a) Data point cardinality (b) Scalability

Figure 2. Comparison of SRNN
In Figure 2(b), the running time of SRNN decreases for enlarging the parallelism of the system

as the number of cluster node increases. The TPL and Voronoi algorithms are not as good as the

515

Lazy-SRNN algorithms at performance and scale. And in running time, the Lazy-SRNN and
Eager-SRNN of optimal strategies are both better than Basic-SRNN. When the node number is 16,
the execution time of Lazy-SRNN is 1.9 times less than Basic-SRNN.

Conclusion
This work studies the RNN query distributed MapReduce. Our optimal Eager-SRNN delivers

performance is better than baseline method, in order to enhance the scalability and performance of
large scale Reverse Nearest Neighbor query. We also have conducted extensive experiments over
both synthetic and real world spatial data to evaluate these algorithms. Finally, we find an
interesting future research direction is to develop algorithms for efficiently answering Bichromatic
Reverse Nearest Neighbors (BRNN) and Continuously Reverse Nearest Neighbor queries (CRNN)
for moving points.

Acknowledgement
This work is supported by the Project of College Students' Innovative and Entrepreneurial

Training Program (201411258048 and 201411258010), the general program of Liaoning Provincial
Department of Education Scientific Research (L2014492 and L2014283), the Twelve-Five
Teaching-reform Planning Project of LiaoNing Province of China (JG14DB037), and the
Teaching-reform Project of Dalian University of China (2013122G1 and 2013123G1).

References

[1] C. Ji, Y. Li, W. Qiu, Y. Jin, Y. Xu, U. Awada, K. Li, and W. Qu. Big data processing:Big
challenges and opportunities. Journal of Interconnection Networks, 13(03n04), 2012.
[2] Y. Shao, J. Xie, Y. Li, S. Gao and C. Ji. Efficient Distributed RNN Query Processing with
Caching. In Applied Mechanics and Materials, pages 5352–5355. Trans Tech Publ, 2014.
[3] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries. In
ACM SIGMOD Record,volume 29, pages 201–212. ACM, 2000.
[4] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30,
VLDB ’04, pages 744–755. VLDB Endowment,2004.
[5] C. Ji, Z. Li, W. Qu, Y. Xu and Y. Li. Scalable nearest neighbor query processing based on
Inverted Grid Index. In Journal of Network and Computer Applications, , volume 44, pages
172-182. 2014.
[6] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM,51(1):107–113, 2008.
[7] C. Ji, H. Hu, Y. Xu, Y. Li, and W. Qu. Efficient multi-dimensional spatial rknn query
processing with mapreduce.In ChinaGrid Annual Conference (ChinaGrid), 2013 8th, pages 63–68.
IEEE, 2013.
[8] L. Ding, G. Wang, J. Xin, X. Wang, S. Huang, and R. Zhang. Commapreduce: an improvement
of mapreduce with lightweight communication mechanisms. Data & Knowledge Engineering,
88:224–247, 2013.
[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapreduce
online. In NSDI, volume 10, page 20, 2010.
[10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing platform.
In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pages 170–177.
IEEE, 2010.
[11] Comap. the consortium for mathematics and its applications. http://www.comap.com

516

