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Abstract. Reverse Nearest Neighbor (RNN) queries are a pipeline of complimentary problems, and 
have aroused a vast concern in the world in the past few years, such as location based services, 
profile based marketing, resource allocation and traffic monitoring system etc. Now the one of the 
most important disadvantages for the RNN is that it has inherent sequential nature and using for 
memory algorithm, which limits its use in data processing of large scale spatial data queries. 
Scalable algorithms for Reverse Nearest Neighbor queries in distributed environment are the key 
problem in this paper. First of all, we investigate the SRNN initialization query method based on 
the inverted grid index. Then, Eager-SRNN has effective treatment on the problem of the scalable 
Multi-dimensional RNN. Eager-SRNN tries to prune spatial objects step by step as soon as they are 
accessed. Beyond that, SRNN algorithm is the first attempt for the exact scalable RNN algorithms 
in a distributed environment on multi-dimensional datasets. An evaluation which we proved 
through a lot of experiments has been widely applied on the new method of the synthetic data 
scalability and the performance. 

Introduction 
In recent years, smart phones, laptop and tablets remarkably have started to carry sensors like 

GPS, RFID, Camera and Bluetooth, etc [1]. Because of the large scale spatial data are increasing 
rapidly, it makes people worried when they want to analyze the centralized algorithms or 
computations on large volumes of multi-dimensional spatial data. Therefore, the distributed 
algorithms for spatial data processing which will remove people worries, so there is an urgent need 
in the contemporary [2]. 

As a typical spatial query algorithm, RNN query retrieves the objects whose nearest neighbors 
include the query point q which is a typical spatial query algorithm. It has been welcomed by 
intelligent navigation, modern communications, traffic control, profile based marketing, resource 
allocation and other areas [2]. In order to make it easy to understand, we cite a simple example, if a 
restaurant wants to attract more crowds and obtain higher profit, it will change its service to cater to 
more customers [3].  

This paper expands on the basis of an earlier published conference papers [2], [5] and [7] in 
several substantial aspects. At first, Eager-SRNN, a new optimization strategy is proposed. In 
Eager-SRNN, we attempt to prune spatial objects as soon as they are visited. Second, we propose an 
accurate and complete proof of correctness for the SRNN algorithms. Third, compared with the 
state-of-the-art algorithms, the SRNN is equally complex. At last, in order to evaluate the 
performance of our proposed algorithms objective and correctly, we added more experiments. 

Related Work 
After the development over the years, the way to solve the exact RNN query through 

technologies has evolved from doing a linear search of all spatial objects. Korn et al, firstly [3] 
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defined the RNN query. As a hotly debated issue attracted many researchers’ attention. The R-tree 
index such as KM [3], it is not perfect, because it cannot guarantee the results no omissions. TPL 
relies mainly on recursively filtering the data by finding perpendicular bisectors between the query 
point and its nearest object [4]. Therefore, it needs to overcome a lot of difficulties to study to make 
the RNN algorithms scalable in a distributed environment. 

Due to the central single node has no or very few computation and storage capability. One way 
to solve large scale RNN query is to use multiple machines simultaneously, and perform the spatial 
index and query in distributed [5]. At present, MapReduce[1] is caused by the enthusiasm of the 
people as a popular alternative for massive-scale parallel data analysis in shared-nothing clusters [6]. 
Each MapReduce job consists of two stages: Map function and Reduce function.  

Guoren Wang et al. proposed the design and evaluation of ComMapReduce which improve the 
MapReduce framework with lightweight communication mechanisms, supporting applications for 
large scale datasets [8].  

In this paper, our goal is to propose a scalable approach that enables efficient processing of 
large-scale, accurate and multi-dimensional spatial RNN named SRNN (Scalable Reverse Nearest 
Neighbor). 

Handing Scalable RNN Query 
In this Section 3.1, we give a definition of SRNN firstly. Then, we describe Eager-SRNN for 

continuous MapReduce jobs over data streams. A Scalable Reverse Nearest Neighbor query is 
formally defined as below: 
  Definition 1 

Scalable Reverse Nearest Neighbor query (SRNN): Given a large set of spatial objects P in an 
n-dimensional large scale space D and a query object q, SRNN query is distributed to retrieve all 
the objects Pp ∈ which have q as their nearest neighbors (NN). Formally,  

{ }),(),( 'qpDistqpDistPpSRNN <∈=  , where Dist() is a distance metric and 'p  is arbitrary 
point in P in addition to p. 

In Lazy-SRNN query process [5], the verification step cannot fetch the output of a filter step 
until it has finished executing and committed its final output to disk. So, we have to wait for a long 
time until all of the results are displayed, which not only wasting our time, but also we cannot find 
our mistakes through the processing. In this section, we present an improved algorithm for 
incremental and support online aggregation of scalable Reverse Nearest Neighbor queries 
(Eager-SRNN, for short). Although SRNN can stream quite directly using modified version of the 
MapReduce framework such as MapReduce Online [9] and Yahoo’s Open Sourced S4 [10] etc. 
They can only be used for share-nothing system that is not what we wanted. We need a new 
streaming system to support global RNN pruning.  

Firstly, in filter step, we recall the PCT algorithm to find a partial result of the nearest neighbors 
of a query point q in each map round by round. We also use pre-clustering based inverted grid index 
to eliminate nodes that may lead to RNN results. The radius starts from a small non-null value as 
the initial and shrinks when the completeness is improved through iterations (the number of objects 
we examine within the radius remains roughly the same). If candidate kNN is found when some 
rounds finished, we eliminate some data points that have no influence on the result through 
half-space pruning. The Eager-SRNN algorithm initializes a kNN list cndL  by inserting the pruned 
kNN result objects. Then, we will immediately send the intermediate result set cndL  to reducer and 
run next round continually with no pause. When reducer gets the cndL  , we could call verification 
step to get the points ip  are the real RNN of q. Note that in Lazy-SRNN, and a reduce task cannot 
fetch the output of a filter task until the filter has finished executing and committed its final output 
to disk. So the results which are worked out by the SRNN presented to the user as soon as possible.  
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Algorithm 1 Eager-SRNN 
Input: Inverted grid index G ,Query point q , cni Sp ∈  
Output: )(qSRNN  //the SRNN of query point q  
1: Filter(): 
2: Initialize set ),,( kqGPCTScnd =  
3: Initialize GTG =  
4: while ∞>TG  do 
5:   for each point cndi Sp ∈  do 
6:     ),,( ipqTGplanesTrimHalfTG −=  
7:     if ),( qpp ii ∈⊥  then 
8:       { }icndcnd pSS −= //pruned point 
9:     end if 
10:   end for 
11: end while 
12: )( icnd paddL  
13: return cndL  
14: Verification() 
15: Verification(): 
16: for each point cndi Lp ∈  do 
17:   if ),,( kpGPCTq i∈  then 
18: { }icndcnd pLL −=  //false hit 
19:   end if 
20: end for 
21: return cndL  

In addition to reduce many points by introducing the half-plane pruning just like Lazy-SRNN, 
our Eager-SRNN query method can also be parallel just like a stream. For example, as shown in 
Figure 1(a), in first round any point in ),( 1 qp⊥ and ),( 4 qp⊥ like 572 ,, ppp and 6p  can be pruned by 
half-pruning. So we get the partial candidate results of NN of q are 1p , 4p  and will immediately 
send the middle result set { }41 , ppLcnd =  to reducer. In Verification step, upon testing for their 
nearest objects, it turns out that only 1p  and 3p  are reverse nearest neighbors while 4p , has 6p  
as its nearest object since distance <),( 46 pp distance ), 4pq（  the dotted circles in Figure 1(b)). 
Finally, Reduce outputs results set which is{ }),( ipq  as early returns to users. Then, in mapper we 
run next round continually with no pause and only consider the points in the unpruned area and find 
the nearest neighbor of q in the next pruning. As shown in Figure 1(c), we find 3p  as a NN of q in 
the second round. We send it to reducer and call parallel verification to get the point 3p  are the real 
RNN of q as latterly returns to users. The termination of condition of pruning is that there are no 
points in unpruned area. As a result, { }31 ,)( ppqSRNN =  undergone several different phases 
continually. 
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    (a) Filter-1    (b) Verification-1&Filter-2  (c) Verification-2      (d) Divide-Conquer 

Figure 1. Illustration of Eager-SRNN 

Analytical Comparison of Eager-SRNN Algorithms 
The following formulas define the equations of our cost-based optimization of SRNN. The 

parallel processing for SRNN is: 
In the map phase, m mappers process mS  bytes of data. The majority of the extra time spent is 

related to reading the input data from disk. sD  is the average bytes/sec. That data of MapReduce 
task (mapper or reducer) can deal with local disks. mS  bytes of data will be read in parallel by 
mappers, which are able to read sD  bytes per second each.  

Then in the shuffling phase, SS  bytes of data are shuffled to r reducers. The majority of the 
shuffling cost is related to shipping the data between distinct machines through the network. rD  is 
the ratio of data actually shipped between distinct machines relative to the total amount of data 
processed. Thus, the total amount of data to be shipped is rcnd DS ⋅  bytes. The data will be received 
in parallel by reducers, each one receiving in average sN  bytes per second.  

In the reduce phase,  bytes of data are analyzed by r reducers. The reducers will read from 
disk s bytes in parallel at the individual cost of  bytes per second. 

Thus, we can get the formula (1), 

),(),(),()( cndcndm SrCostRSsCostSSmCostMqS ++=
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Because the same computing environment, we set the parameters, m, rD , r, sN , sD , to the same 
value in all of the SRNN algorithms. Therefore, we can combine part of the same parameters into 
α , β  and we can get the formula (2), 

βα ⋅+⋅⋅= cnd
s

m S
D

SqS 1)(                            (2) 

Theorem 1 
)()()( qSqSqS ELB << , where BS , LS , ES  are the cost of Basic-SRNN, Lazy-SRNN and 

Eager-SRNN algorithms respectively. 
Proof 
In Basic-SRNN, formula (2) are directly used because it is not optimized, 

 βα ⋅+⋅⋅=
cnd

S

B
B

mB S
D

SqS 1)(                         (3) 

Similarly, in Lazy-SRNN, And in Eager-SRNN. 
Using the half-plan pruning method in Lazy-SRNN can cause the processing efficiency of 

SBD in 
Map step is greatly increased. And Eager-SRNN not only uses half-plane pruning, but also saves 
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intermediate results in the distributed cache rather than in the disk. Thus,
SED  is the biggest of them. 

That is, 
SSS BLE DDD >> . 

cndBS  is the biggest because all of the neighbors around q  are the 
candidate set in the Basic-SRNN. Lazy-SRNN may get additional candidate objects which are not a 
reverse nearest neighbor in filter step of SRNN, while Eager-SRNN using global pruned 
information to filter the unpromising data. Therefore, we find 

cndcndcnd BLE SSS << . In addition, 
candidate result data set is much less than the original input data set in SRNN, Thus, we can get, 

βα ⋅+⋅⋅
cnd
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S 1
< βα ⋅+⋅⋅

cnd
S

L
L

m S
D

S 1
< βα ⋅+⋅⋅

cnd
S

E
E

m S
D

S 1              (4) 

That is, )()()( qSqSqS ELB << . 

Experimental Study 
In this section, we experimentally evaluate the performance of SRNN for one type of Basic and 

two types of optimization strategies. And we compare SRNN against the state-of-the-art algorithm 
for RNN queries TPL [4] in non-distributed environment. 

We set up a cluster of 32 commodity PCs in 100M high speed Gigabit Ethernet, each of which 
has a Dual Core AMD 2.00 GHz CPU,73GB of SCSI hard drive, 8GB memory, network and 
Ubuntu10.10 server OS. We use Cloudera Hadoop 0.20.2 and compile the source codes under JDK 

1.6. One TaskTracker and DataNode daemon run on each slave. A single NameNode and 
JobTracker run as the master.DFS chunk size is 64 MB. 

We used the real-world data set (RDS) in our experiments is the taxi GPS data with traffic 
conditions of Shenzhen City [11], it includes approximately 180,000,000 data points, and the raw 
data was about ten gigabytes before decompression. We used a subset of 1,800,000 data points in 
our experiments, where each data point represents a breaking behavior of tracking vehicle, and each 
data point contains seven dimensionalities. 

In this experiment, we compare the native Basic-SRNN and optimized Lazy-SRNN and 
Eager-SRNN algorithms. Figure 2 shows the performance of change data size and cluster size to 
evaluate SRNN query. From that we can find the performance of Lazy-SRNN and Eager-SRNN is 
improved significantly, because SRNN algorithms have half-space pruning filter some data points 
and MapReduce parallel to improve the scalability of query processing. And in Figure 2(a), we can 
find Basic-SRNN may go through some nodes that can be pruned and subsequently, access most of 
the spatial space. When the Lazy-SRNN and Eager-SRNN increase the shuffle phase of reducing 
task, the performance is improved greatly as shown in the Figure 2(a). When the objects number is 
1.8 × 10 6, the execution time of Lazy-SRNN is 5 times less than Basic-SRNN. 

 
             (a) Data point cardinality                        (b) Scalability 

Figure 2. Comparison of SRNN 
In Figure 2(b), the running time of SRNN decreases for enlarging the parallelism of the system 

as the number of cluster node increases. The TPL and Voronoi algorithms are not as good as the 
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Lazy-SRNN algorithms at performance and scale. And in running time, the Lazy-SRNN and 
Eager-SRNN of optimal strategies are both better than Basic-SRNN. When the node number is 16, 
the execution time of Lazy-SRNN is 1.9 times less than Basic-SRNN. 

Conclusion 
This work studies the RNN query distributed MapReduce. Our optimal Eager-SRNN delivers 

performance is better than baseline method, in order to enhance the scalability and performance of 
large scale Reverse Nearest Neighbor query. We also have conducted extensive experiments over 
both synthetic and real world spatial data to evaluate these algorithms. Finally, we find an 
interesting future research direction is to develop algorithms for efficiently answering Bichromatic 
Reverse Nearest Neighbors (BRNN) and Continuously Reverse Nearest Neighbor queries (CRNN) 
for moving points. 
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