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Abstract. Conditional nonlinear optimal perturbation (CNOP) is an initial perturbation evolving 
into the largest nonlinear evolution at the prediction time. It has played an important role in 
predictability and sensitivity studies of nonlinear numerical models. Generally, the solution for 
CNOP is the spectral projecting gradient algorithm which is based on the adjoint model. However, 
many numercial models have no corresponding adjoint models and new implementations of these 
adjoint models cost tremendous engineering work. In this paper, we propose a multi-swarm PSO 
co-evolution algorithm base on principal component analysis to solve CNOP. To demonstrate the 
validity, the Zebiak-Cane model is utilized as a case to verify the proposed method. Experimental 
results show that the proposed method can be treated as an approximate solution to CNOP. 

Introduction 
Conditional nonlinear optimal perturbation (CNOP) [1] is an initial perturbation evolving into 

the largest nonlinear evolution at the prediction time. It has played an important role in 
predictability and sensitivity studies of nonlinear numerical models. CNOP has been applied to 
analyze the optimal precursor of El Nino-Southern Oscillation (ENSO) [2]. The common method 
for solving CNOP is the spectral projecting gradient (SPG2) [3]. It requires two inputs: the 
objective function and corresponding gradient which is obtained by adjoint models. Unfortunately, 
many modern numerical models have no corresponding adjoint models, and it is a huge work to 
implement a new one. Thus, it is necessary to develop new approaches without gradient.  

Evolutionary algorithms (EAs) [4] have been used to solve CNOP. Wen [5] proposed simulated 
annealing based ensemble projecting method to solve CNOP. The genetic algorithm was applied by 
Zhang [6] for solving CNOP in Zebiak-Cane model. However, there is only one population in their 
methods. As individual population algorithms could easily fall into the local optimum, multiple 
populations can be a better choice.  

Co-evolution was proposed by Potter [7], which simulates the evolution process of an ecosystem 
consisting of two or more species. In the case of simulating optimization processes, a number of 
populations are generated and evolve concurrently. During evolution time, they can share 
information with others. 

As the solution space of modern numerical model usually has extremely high dimensions, 
dimensional reduction methods could be used. Principal component analysis (PCA) [8] is a 
statistical procedure that uses an orthogonal transformation to convert a set of observations of 
possibly correlated variables into a set of values of linearly uncorrelated variables called principal 
components. The number of principal components is less than or equal to the number of original 
variables. In this paper, we propose utilizing multi-swarm PSO co-evolution algorithm [9] based on 
principal component analysis to solve CNOP of practical models, and perform the case study of the 
Zebiak-Cane model which is famous for the successful forecast of the ENSO event.  

CNOP 

CNOP is the perturbation *
0δu  that make the objective function J(u0) obtain the maximum in the 

condition of δ≤|||| 0u  , i.e. 
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Where Mt0→t is the propagator of a nonlinear model from the initial time t0 to the prediction time 
t.  JTE is the nonlinear evolution of the initial perturbation, u0 is the initial perturbation and the δ  
is the magnitude of uncertainty. Eq. 1 could also be transformed into a minimum problem as 
follows: 
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Thus, the gradient of J could be obtained as follows: 
TE

T JHJ **2−=∇                                                             (4)                                                    
Where H is the tangent matrix of the nonlinear model Mt0→t , and HT is called the Jacobean 

matrix of JTE. To compute HT, corresponding adjoint models have been developed and used. 
However, it is difficult for modern numerical models that without adjoint models to solve CNOP.  

Multi-Swarm PSO Co-Evolution Algorithm based on PCA 
In previous study [9], there is conclusion that a driven dissipative system can get into a steady 

state which is constitutive of attractors with low dimension. And CNOP can be projected onto the 
space expanded by the attractors. Therefore, evolutionary algorithm could be utilized to obtain 
CNOP in low-dimensional space. The PCA based multi-PSO co-evolution algorithm (MPSOCE) 
mainly has two steps: the feature extraction and multi-swarm PSO co-evolution. 

Feature Extraction. 
To get the training data set X, we have ran the model from initial state. The extracted features 

have statistical meaning which is similar with the character of attractors. The principal components 
can be acquired by the eigen-decomposition:  

Σ= PPXX T                                                                  (5)   
Where Σ  is the diagonal matrix whose diagonal entries correspond to the eigenvalues of XXT. 

As XXT is positive definite matrix, the columns of the obtained eigenvectors P are mutually 
orthogonal. Then take the k ( k << n) eigenvectors corresponding to the top k  biggest eigenvalues. 

Multi-swarm PSO Co-Evolution.  
Particle swarm optimization (PSO) [10], is one of the most effective optimization algorithms. It 

is described as： 
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Where ω is an inertia weight coefficient, c1 and c2 are acceleration coefficients, r1 and r2 are 
random numbers in the range[0,1]. xi is the location of the i-th particle on the t-th iteration, vi denotes 
a velocity vector of the i-th particle on the t-th iteration. pbesti is personal best location that gives 
the best value of the evaluation function of the i-th particle on the i-th iteration, gbesti is global best 
location that gives the best value of the evaluation function on the i-th iteration. Based on the idea 
of co-evolution, we propose a new movement formula of each particle： 

)_(**)(*** 2211
1 t

i
tt

i
t
i

t
i

t
i xgbestSwarmrcxpbestrcvv −+−+=+ w                         (8)                                

tgbestSwarm _ means the location that gives the best value of the evaluation function on the i-th 
iteration of all swarms.To population Si (1 ≤ i ≤ n) in each iteration, while the particles are evolving, 
some poor particles will be selected to be killed in certain ratios. Specifically, a pair of parent 
particles is selected for breeding child particle from the pool selected previously. And child particles 
will replace the dead ones. To xij

t , that is the j dimension of particle xi
t at t-th iteration, we have: 

if (random(0.0,1.0) < property) 
       j

t
ij parentx 1=  

else                                                                        (9)                                                                                            
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ij parentx 2=  

Where 1parent and 2parent are the parent particles, and fit1 and fit2 are their fitness function 
values. The new child particle will replace dead particle if it meets the threshold, otherwise the 
process repeats until satisfaction, we set the property as follows: 

)/( 211 fitfitfitproperty +=                                                      (10)                                      
At the end of iteration, some elite particles of each swarm will be selected to form gene pool in 

ratio. A gene particle of the pool and a non-genetic particle will be chosen to breed new child 
particle, which will substitute the non-genetic particle. The process is similar with (9). We have 
algorithm 1: 

Algorithm 1: MPSOCE algorithm 
Input: training data set X 

1: Make eigen-decomposition take top k eigenvectors  
2: while the termination is not satisfied do 
3:     Randomly generate initial populations N and particles S 
4:     For each particle i = 1,2,…, S  do 
5:          Compute adaption value  f(xi) 
6:          Select particles with larger value to form gene pool 
7:          Update each particle’s velocity, position, adaption value 
8:     End do    
9:     Select some poor particles of each swarm to be killed 
10:     Form gene pool of all swarms 
11:     Pick gene particles and non-genetic particles to breed new ones 
12: End while 

Output: the optimal solution CNOP 

Experiments 
To show the validity of the MPSOCE algorithm, we apply it to solve CNOP in the Zebiak-Cane 

(ZC) model [11]. The ZC model successfully forecasted the El Nino event of 1986-1987. Since then, 
it has been widely applied to the research of the predictability and dynamics of ENSO. Moreover, 
we perform a comparison between MPSOCE and the adjoint-based method, which is called XD 
method [2]. Due to XD method’s high precision, it is usually treated as the benchmark. In this paper, 
we compare the magnitudes and patterns of CNOP generated by the two methods. Some recently 
proposed methods like SAEP and PCAGA have also be compared with our methods. 

ZC model. 
The ZC model is a mesoscale air-sea coupled model for the Tropical Pacific, and composed of 

three sub-models: the atmospheric model, ocean model and coupled model. In ZC model, u0 in Eq. 
2 is a perturbation vector consists of the sea surface temperature anomalies (SSTA) and thermocline 
depth anomalies (THA). 

 
Fig. 1 Region of ZC model 

The region of ZC coupled model is shown is figure 1. The inner rectangle is the integration 
region of SSTA in the model. The middle rectangle is the region of the ocean model. The outer 
rectangle represents the region of the atmospheric model. The training data set is acquired through 
the integration of the ZC model over 200 years. The dimension of ZC model grid is 30*34 (for 
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SSTA and THA respectively). Due to the fact that there is no value in the marginal area, the 
marginal area is removed to reduce the size of samples in the training set to 20*27 *2. 

Comparison Analysis. 
According to previous study [6], we set eigenvectors k as 80. In [12], we take their recommended 

parameters of PSO. We take ω as 0.729, c1=c2=1.49. 
We set each month as the initial month and its optimization time span as 9 months, then run two 

methods. The magnitude of CNOP in each initial month is shown in figure 1. It is obvious that all 
lines have the same trend. The magnitudes of MPSOCE are little less than SAEP in April, but 
greater than it in other months. Moreover, it has greater magnitudes than PCAGA and MPSOCE. 
Difference between the XD method and MPSOCE is shown in table 1. The biggest difference is in 
February while the smallest one in April. Without loss of generality, we choose the two months as 
the examples to show the pattern comparison.  

In figure 2, the left column is the results from MPSOCE and the right is from XD method. Three 
rows of sub-figures are the patterns of the SSTA, THA and the SSTA evolution. In the first row, it is 
obvious that the left part is negative while the right part is positive, which is the character of El 
Nino. In the third row, the patterns of SSTA evolution in both methods look similar. Although the 
THA in the second row look different, they both have the characteristic that middle areas are 
positive while other areas are negative. Since MPSOCE just extracts part of all eigenvectors, its 
THA pattern looks smoother than that in XD method. And the THA pattern could better reflects the 
range of ocean current in east pacific. The result of April is shown in figure 3. The CNOP pattern 
generated by MPSOCE looks similar with XD method in both cases that have the biggest and 
smallest magnitude difference. Therefore, we could draw the conclusion that MPSOCE can be 
treated as an approximate solution for CNOP. 

 
Fig. 2 The magnitude of CNOP of 5 methods 

 In Fig 3, the left column represents the results from MPSOCE and the right is from the XD 
method. Three rows of sub-figures are the patterns of the SSTA, THA and the SSTA evolution. In 
the first row, the left SSTA keep the main large-scale characters of the right one. It is obvious that 
the left part is negative while the right part is positive, which is the character of El Nino. In the third 
row, the patterns of SSTA evolution in both methods look similar except that the left one is a little 
weaker than the right one. Although the THA in the second row look different at first glance, they 
both have the characteristic that middle areas are positive while other areas are negative. Since 
MPSOCE just extracts part of all eigenvectors, its THA pattern looks smoother than that in XD 
method. And the THA pattern could better reflects the range of ocean current in east pacific.  
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Fig. 3 CNOP pattern in February 

As the magnitudes of CNOP in February from both methods have biggest difference, the 
previous results in April can also be observed, which is shown in figure 4. In other words, the 
CNOP pattern generated by MPSOCE looks similar with that by the XD method in both cases 
which have the biggest and smallest magnitude difference. Therefore, we could draw the conclusion 
that MPSOCE can be treated as an approximate solution for CNOP. 
 

Table 1. The difference between XD method and MPSOCE 
Month 

Method 1 2 3 4 5 6 7 8 9 10 11 12 

XD 34.0 36.5 36.5 28.0 24.8 24.0 20.5 20.0 20.5 23.1 25.5 30.0 
MPSOCE 26.0 28.4 29.0 24.0 19.0 17.0 16.2 15.5 16.0 17.7 21.1 25.8 

diff 8.0 8.1 7.5 4.0 5.8 7.0 4.3 5.5 4.5 5.4 4.4 4.2 
 

 
Fig. 4 CNOP pattern in April 

Efficiency Analysis. 
In Table 2, when 80 eigenvectors are taken, the proposed method consumes about 14.9 minutes 

while the XD method needs 13.4 minutes with 30 initial guess fields(IGF), and the time PCAGA 
and MPSOCE need is 21 minutes and 18.3 minutes respectively. 

 
Table 2. Time consumption of five methods 

Method Time (mins) 
XD (1 IGF) 0.45 
XD (30 IGF) 13.4 

MPSOCE 13.8 
SAEP 14.9 

PCAGA 21.0 
MPSOCE 18.3 

Generally, the XD method is much faster than our method when it takes only one initial guess 
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field. But the XD method maybe obtains the locally optimum, which means the global optimum 
cannot be obtained in this case. Thus we use 30 initial guess fields in this case. Therefore, the 
proposed method has similar computational efficiency with the XD method and has better 
efficiency than other algorithms. 

Conclusion 
This paper proposes a multi-swarm PSO co-evolution algorithm based on principal component 

analysis to solve CNOP. PCA is applied to the data set to obtain principal components. The 
proposed method is applied to search CNOP on the space. Compared with other proposed 
algorithms, our method has better CNOP magnitude and time efficiency. Although our method just 
has similar running time with the XD method, our method is free of adjoint model. That is, we can 
apply the proposed method to slove CNOP in other numerical models without adjoint models, 
which could improves the capability of the applications of CNOP.  
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