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Abstract. Hardware implementation has been proven to be an effective way to take full advantage 
of the parallel and distributed computation ability of artificial neural network. To simplify the 
hardware implementation process of different kinds of neural networks, a modularization and 
digitization implementation method based on FPGA is proposed. Firstly, some commonly used 
artificial neural network structures are divided into several functional modules, which are then 
digitized with HDL. Finally, the hardware implementation of an expected neural network can be 
achieved by combining those related modules with ease in FPGA. The modularization construction 
and hardware implementation process of a discrete Hopfield neural network is taken as an example 
to validate the feasibility and effectiveness of the method. 

1 Introduction 
Artificial neural networks (ANN) with parallel process, distributed storage and self-learning 

characteristics are widely used in the information processing field. Currently, there are two ways to 
implement the functions of neural networks; one is by performing algorithms with computer 
software simulation, while the other is by implementing structure and algorithms with hardware. 
Since the software simulation implementation method is characterized by low speed and low 
parallelism, the performance of a neural network cannot be fully exerted. Therefore, the hardware 
implementation methods based on electronic techniques have attracted more and more attention in 
recent years. 

Performing neural network algorithms with general purpose processor units [1] [2] has been a 
general method for hardware implementation of neural network. Nevertheless, it is essentially a 
hybrid method. Complete hardware implementation is based on very large scale integrated circuit 
(VLSI) [3] [4]; or based on Field Programmable Gate Array (FPGA) [5] [6] [7] [8]. To a certain 
degree, although these methods above can take full advantage of the performance of neural 
networks, most achievements are dedicated to specific neural network models or stationary network 
structures. Therefore, there is lack of universal and flexible hardware implementation method in 
practical applications.  

To simplify the hardware implementation process of different kinds of neural networks, a 
modularization and digitization implementation method based on FPGA is proposed, in which some 
commonly used artificial neural network structures are firstly divided into several functional 
modules; then the functional modules are digitized with Hardware Description Language (HDL); 
finally, an expected neural network can be implemented by combining those related modules with 
ease in FPGA. 

2 Module Division 
Considering commonly used artificial neural network structures, we extracted 5 functional 

modules as basic modules to construct various artificial neural network models, as shown in Figure 
1, including input processing module (IPM), network connection and synaptic weight memory 
module (NWM), neuron module (NM), learning module (LM) and output processing module 
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Fig.1. ANN functional module division 

Functions of each module are shown as follows: 
(1) Input processing module (IPM): It is designed for translating input signals or input stimulus 

representing the external information into the signals processed by the neural network. 
(2) Network connection and synaptic weight memory module (NWM): It shows the connections 

among neurons inside the neural network and stores the corresponding connection weights (synapse 
weight), thresholds and state values. Different neural network structures can be constituted by 
altering the connections between the neurons, such as the monolayer (multilayer) feedforward 
neural network, the feedback neural network, the fully connected neural network, the partially 
connected neural network, the local connection neural network and so on.  

(3) Neuron module (NM): It is the most basic information processing unit in the neural network. 
(4) Learning module (LM): It controls the neural network training or learning process, which 

regulates the synaptic weight and determines the neuronal threshold.  
(5) Output processing module (OPM): It estimates whether the neural network has reached a 

stable status. If the neural network reaches the condition, then OPM will convert the signals 
processed by the neural network into the corresponding output signals, or else it will return a signal 
to NM for another calculation. 

3 Module Implementation 
To realize each module in FPGA and make the connection between modules easily, VHDL (Very 

High Speed Integrated Circuit Hardware Description Language) is used to describe each module. 
Since VHDL code can be synthesized to fit any FPGA, this digitization method tends to form a 
systematic and generally accepted method for constituting an expected neural network in FPGA 
easily and quickly with those modules. 

3.1 NWM Digitization 
When the neural networks size is large and the connections among neurons are complicated, 

especially when the network structure (the number of neurons and the connections between neurons) 
needs to be variable, a flexible network connection and synaptic weight memory structure is 
necessary. In this case, a linked list structure with two memory, initial memory and topology 
structure memory is adopted to express connection topology and store thresholds, state values and 
weights, as shown in Figure 2. 
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Fig.2. NWM structure 

The figure shows the connections among m neurons, N1 to Nm. The signs of N1 to Nm are 
stored in the initial memory area and at the same time each sign points to a topology structure 
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memory area where the threshold, state values and weights related to this neuron are stored in 
consecutive memory blocks. 

3.2 Neuron Module (NM) 
 An artificial neuron model [9] can be expressed as equation (1): 
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Where xj (j=1,2,...,N) is the input of neuron i, wij is the connection strength or synaptic weight 
between neuron i and j, bi is the threshold of neuron i, )(⋅f is the excitation function and yi is the 
output of neuron i. The neuron model can be divided into two functional sub-modules according to 

the arithmetic expression: multiplier/accumulator sub-module 
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function sub-module )(⋅f . 
Since multiplier/accumulator sub-module needs a large number of multiplication and addition 

operations and may occupy vast FPGA resources, a parameterized multiplier/accumulator structure 
is designed, by which the connection between the multipliers and the accumulators can be 
configured to be completely parallel, completely serial or partially parallel and partially serial to 
adapt FPGAs with different quantities of resources.  

Provided neuron i is connected with other N neurons, to achieve the fastest processing speed, a 
completely parallel multiplier/accumulator sub-module with 2N+1 data input ports (1 threshold, N 
state values and corresponding N weights) can be formed as Figure 3 by setting corresponding 
parameters. A total of N multipliers, N/2 adders, a data selector and an accumulator are used. The 
data selector is to select the output data of the adders to pass to the accumulator, by which the data 
are accumulated. 
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Fig.3. Completely parallel multiplier/accumulator sub-module structure 
Although the completely parallel structure has the highest processing speed, it occupies most 

FPGA logic resources. Due to this reason, a partially parallel and partially serial structure may be a 
better tradeoff between the speed and resource, as shown in Figure 4, where the multiplexer is to 
divide the input into N/M groups and then successively transfer the data into the 
multiplier/accumulator sub-module, which consists of M Multipliers, a multiple inputs adder (MIA), 
a data selector and an accumulator.  

By changing the parameter M, a completely serial structure may be acquired to occupy the least 
logic resources of FPGA, while the processing speed may be the lowest. 
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Fig.4. Partially parallel and partially serial multiply-accumulate structure 
Since most calculations performed in neural network model are based on continuous value, the 

above-mentioned multiplication and addition operations are inevitably applied to floating-point 
numbers. To meet the demands of floating point number accuracy for different neural networks, a 
so-called custom floating point number format is adopted to express the floating point number by 
two's complement, as shown in equation (2). 

EFN 2×=                                                               (2) 
Wherein F is a decimal, E is the index and 2 is the base number. The decimal part includes the 

sign bit and the practical decimal bits. F is defined as a decimal less than 1 and E is an integer. It is 
obvious that the given binary digits for F and E determine the accuracy and the range of the floating 
point number N respectively. During the calculation process, all numbers should be normalized 
according to the format.   

For excitation function sub-module, the frequently-used excitation functions, such as threshold 
function, piecewise linear function and Sigmoid function are implemented by unified lookup table 
(LUT) method with high accuracy. 

3.3 Learning Module (LM) 
Generally, a learning process for a neural network is to determine the weights and thresholds of 

the network according to some learning rules, such as Hebb learning rule, error correction learning 
rule, memory-based learning rule, random learning rule and competitive learning rule [9]. Since 
most learning rules are too complicated to be implemented in FPGA, and different neural networks 
adopt different learning rules, off-line learning based on MATLAB is applied to obtain weights and 
thresholds firstly and then store them into the hardware topology structure memory. 

4 System Test by Discrete Hopfield Neural Network 

To test and verify the functions of the modularization hardware implementation system for 
neural network, a discrete Hopfield neural network containing 64 neurons is constructed in a 
ALTERA EP4CE115F29C7 FPGA to perform the recognition of the digits 0-9 with the size 
8pixel× 8pixel. The constructed hardware structure is shown in Figure 5, where the system control 
module is designed to coordinate the time sequence of other modules. 

The frequency of the system clock is 20MHz which is inputted into the system from the port clk. 
The port start is to start the system by applying a falling edge. The associated results are outputted 
from the port associate_data[63..0]. For testing the correctness of the associated result, the port 
standard_data[63..0] and noisy_data[63..0] are used to output standard sample data and 
noise-polluted sample data respectively. The port over is to indicate the end of association process.  

Ultimately, the test results show that the system can complete one-time digit recognition in about 
2ms. And what is more important, it validates the feasibility and effectiveness of the modularization 
hardware implementation approach for artificial neural network. 
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Fig.5. Modularization hardware structure of discrete Hopfield neural network 

5 Conclusion 
How to simplify the hardware implementation process of different kinds of neural networks 

based on FPGA has been studied in this paper. The proposed modularization and digitization can 
not only take full advantage of the parallel and distributed computation ability of artificial neural 
network, but also construct the desired neural network with ease. It provides a novel approach for 
hardware implementation of artificial neural network. 
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