

A Modularization Hardware Implementation Approach for Artificial
Neural Network

Tong WANG1, a, Lianming WANG*2, b

1School of Physics, Northeast Normal University, Changchun, 130024, China
2School of Physics, Northeast Normal University, Changchun, 130024, China

aemail: wangt443@nenu.edu.cn, bemail:wanglm703@nenu.edu.cn(Correspondence)

Keywords: Artificial Neural Network; Modularization; Digitization; FPGA

Abstract. Hardware implementation has been proven to be an effective way to take full advantage
of the parallel and distributed computation ability of artificial neural network. To simplify the
hardware implementation process of different kinds of neural networks, a modularization and
digitization implementation method based on FPGA is proposed. Firstly, some commonly used
artificial neural network structures are divided into several functional modules, which are then
digitized with HDL. Finally, the hardware implementation of an expected neural network can be
achieved by combining those related modules with ease in FPGA. The modularization construction
and hardware implementation process of a discrete Hopfield neural network is taken as an example
to validate the feasibility and effectiveness of the method.

1 Introduction
Artificial neural networks (ANN) with parallel process, distributed storage and self-learning

characteristics are widely used in the information processing field. Currently, there are two ways to
implement the functions of neural networks; one is by performing algorithms with computer
software simulation, while the other is by implementing structure and algorithms with hardware.
Since the software simulation implementation method is characterized by low speed and low
parallelism, the performance of a neural network cannot be fully exerted. Therefore, the hardware
implementation methods based on electronic techniques have attracted more and more attention in
recent years.

Performing neural network algorithms with general purpose processor units [1] [2] has been a
general method for hardware implementation of neural network. Nevertheless, it is essentially a
hybrid method. Complete hardware implementation is based on very large scale integrated circuit
(VLSI) [3] [4]; or based on Field Programmable Gate Array (FPGA) [5] [6] [7] [8]. To a certain
degree, although these methods above can take full advantage of the performance of neural
networks, most achievements are dedicated to specific neural network models or stationary network
structures. Therefore, there is lack of universal and flexible hardware implementation method in
practical applications.

To simplify the hardware implementation process of different kinds of neural networks, a
modularization and digitization implementation method based on FPGA is proposed, in which some
commonly used artificial neural network structures are firstly divided into several functional
modules; then the functional modules are digitized with Hardware Description Language (HDL);
finally, an expected neural network can be implemented by combining those related modules with
ease in FPGA.

2 Module Division
Considering commonly used artificial neural network structures, we extracted 5 functional

modules as basic modules to construct various artificial neural network models, as shown in Figure
1, including input processing module (IPM), network connection and synaptic weight memory
module (NWM), neuron module (NM), learning module (LM) and output processing module

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 670

(OPM).

Output
Response

Input
Processing

Module
(IPM)

Input
Stimulus

Network Connection and Synaptic Weight
Memory Module (NWM)

Neuron
Module
(NM) Output

Processing
Module
(OPM)

Learning Module (LM)

Fig.1. ANN functional module division

Functions of each module are shown as follows:
(1) Input processing module (IPM): It is designed for translating input signals or input stimulus

representing the external information into the signals processed by the neural network.
(2) Network connection and synaptic weight memory module (NWM): It shows the connections

among neurons inside the neural network and stores the corresponding connection weights (synapse
weight), thresholds and state values. Different neural network structures can be constituted by
altering the connections between the neurons, such as the monolayer (multilayer) feedforward
neural network, the feedback neural network, the fully connected neural network, the partially
connected neural network, the local connection neural network and so on.

(3) Neuron module (NM): It is the most basic information processing unit in the neural network.
(4) Learning module (LM): It controls the neural network training or learning process, which

regulates the synaptic weight and determines the neuronal threshold.
(5) Output processing module (OPM): It estimates whether the neural network has reached a

stable status. If the neural network reaches the condition, then OPM will convert the signals
processed by the neural network into the corresponding output signals, or else it will return a signal
to NM for another calculation.

3 Module Implementation
To realize each module in FPGA and make the connection between modules easily, VHDL (Very

High Speed Integrated Circuit Hardware Description Language) is used to describe each module.
Since VHDL code can be synthesized to fit any FPGA, this digitization method tends to form a
systematic and generally accepted method for constituting an expected neural network in FPGA
easily and quickly with those modules.

3.1 NWM Digitization
When the neural networks size is large and the connections among neurons are complicated,

especially when the network structure (the number of neurons and the connections between neurons)
needs to be variable, a flexible network connection and synaptic weight memory structure is
necessary. In this case, a linked list structure with two memory, initial memory and topology
structure memory is adopted to express connection topology and store thresholds, state values and
weights, as shown in Figure 2.

Initial
Memory

N1
···
Nk
···
Nm

Topology Structure Memory
Threshold Weight

bk

···
xi
···
xj
···

···
wki
···
wkj
···

State Values

Fig.2. NWM structure

The figure shows the connections among m neurons, N1 to Nm. The signs of N1 to Nm are
stored in the initial memory area and at the same time each sign points to a topology structure

671

memory area where the threshold, state values and weights related to this neuron are stored in
consecutive memory blocks.

3.2 Neuron Module (NM)
 An artificial neuron model [9] can be expressed as equation (1):











+= ∑

=

N

j
ijiji bxwfy

1
 (1)

Where xj (j=1,2,...,N) is the input of neuron i, wij is the connection strength or synaptic weight
between neuron i and j, bi is the threshold of neuron i,)(⋅f is the excitation function and yi is the
output of neuron i. The neuron model can be divided into two functional sub-modules according to

the arithmetic expression: multiplier/accumulator sub-module 









+∑

=

N

j
ijij bxw

1
and excitation

function sub-module)(⋅f .
Since multiplier/accumulator sub-module needs a large number of multiplication and addition

operations and may occupy vast FPGA resources, a parameterized multiplier/accumulator structure
is designed, by which the connection between the multipliers and the accumulators can be
configured to be completely parallel, completely serial or partially parallel and partially serial to
adapt FPGAs with different quantities of resources.

Provided neuron i is connected with other N neurons, to achieve the fastest processing speed, a
completely parallel multiplier/accumulator sub-module with 2N+1 data input ports (1 threshold, N
state values and corresponding N weights) can be formed as Figure 3 by setting corresponding
parameters. A total of N multipliers, N/2 adders, a data selector and an accumulator are used. The
data selector is to select the output data of the adders to pass to the accumulator, by which the data
are accumulated.

Accumulator

bi

Multiplier N-1

Multiplier 2

Multiplier j-1

Multiplier j

Multiplier N

···

···

Multiplier 1
x1

wi1

x2
wi2

xj-1
wi(j-1)

xj
wij

xN-1
wi(N-1)

xN
wiN

···

···
Data

Selector

Adder
1

Adder
j/2

Adder
N/2

Multiple
Inputs
Adder
(MIA)

···

···

Multiplier/accumulator
Result

Fig.3. Completely parallel multiplier/accumulator sub-module structure
Although the completely parallel structure has the highest processing speed, it occupies most

FPGA logic resources. Due to this reason, a partially parallel and partially serial structure may be a
better tradeoff between the speed and resource, as shown in Figure 4, where the multiplexer is to
divide the input into N/M groups and then successively transfer the data into the
multiplier/accumulator sub-module, which consists of M Multipliers, a multiple inputs adder (MIA),
a data selector and an accumulator.

By changing the parameter M, a completely serial structure may be acquired to occupy the least
logic resources of FPGA, while the processing speed may be the lowest.

672

bi

···

···

wi1

xM
wiM

xN-M+1
wi(N-M+1)

xN
wi*N

Multiplier/accumulator
Sub-module (MS)

···

···

Multiplexer

······

Multiplier M

Multiple
Inputs
Adder
(MIA) Accumulator Multiplier/accumulator

Result

x1

Data
Selector

···

Group
1

Group
N/M

···
Multiplier 1

Fig.4. Partially parallel and partially serial multiply-accumulate structure
Since most calculations performed in neural network model are based on continuous value, the

above-mentioned multiplication and addition operations are inevitably applied to floating-point
numbers. To meet the demands of floating point number accuracy for different neural networks, a
so-called custom floating point number format is adopted to express the floating point number by
two's complement, as shown in equation (2).

EFN 2×= (2)
Wherein F is a decimal, E is the index and 2 is the base number. The decimal part includes the

sign bit and the practical decimal bits. F is defined as a decimal less than 1 and E is an integer. It is
obvious that the given binary digits for F and E determine the accuracy and the range of the floating
point number N respectively. During the calculation process, all numbers should be normalized
according to the format.

For excitation function sub-module, the frequently-used excitation functions, such as threshold
function, piecewise linear function and Sigmoid function are implemented by unified lookup table
(LUT) method with high accuracy.

3.3 Learning Module (LM)
Generally, a learning process for a neural network is to determine the weights and thresholds of

the network according to some learning rules, such as Hebb learning rule, error correction learning
rule, memory-based learning rule, random learning rule and competitive learning rule [9]. Since
most learning rules are too complicated to be implemented in FPGA, and different neural networks
adopt different learning rules, off-line learning based on MATLAB is applied to obtain weights and
thresholds firstly and then store them into the hardware topology structure memory.

4 System Test by Discrete Hopfield Neural Network

To test and verify the functions of the modularization hardware implementation system for
neural network, a discrete Hopfield neural network containing 64 neurons is constructed in a
ALTERA EP4CE115F29C7 FPGA to perform the recognition of the digits 0-9 with the size
8pixel× 8pixel. The constructed hardware structure is shown in Figure 5, where the system control
module is designed to coordinate the time sequence of other modules.

The frequency of the system clock is 20MHz which is inputted into the system from the port clk.
The port start is to start the system by applying a falling edge. The associated results are outputted
from the port associate_data[63..0]. For testing the correctness of the associated result, the port
standard_data[63..0] and noisy_data[63..0] are used to output standard sample data and
noise-polluted sample data respectively. The port over is to indicate the end of association process.

Ultimately, the test results show that the system can complete one-time digit recognition in about
2ms. And what is more important, it validates the feasibility and effectiveness of the modularization
hardware implementation approach for artificial neural network.

673

Fig.5. Modularization hardware structure of discrete Hopfield neural network

5 Conclusion
How to simplify the hardware implementation process of different kinds of neural networks

based on FPGA has been studied in this paper. The proposed modularization and digitization can
not only take full advantage of the parallel and distributed computation ability of artificial neural
network, but also construct the desired neural network with ease. It provides a novel approach for
hardware implementation of artificial neural network.

Acknowledgement
In this paper, the research was sponsored by the National Science Foundation of China (Project

No. 21227008) and Jilin Provincial Science and Technology Agency (Project No. 20130102028JC).

References

[1] Seul Jung, Sung Su Kim. Hardware Implementation of a Real-Time Neural Network Controller
with a DSP and an FPGA for Nonlinear Systems [J]. IEEE Transactions on Industrial Electronics.
2007:54 (1):265-271.

[2] Geun-Hyung, Sung-su Kim, Seul Jung. Hardware Implementation of a RBF Neural Network
Controller with a DSP 2812 and an FPGA for Controlling Nonlinear Systems [C]. International
Conference on Smart Manufacturing Application. Gyeonggi-do, 2008:167-171.

[3] Wang Jian, Wan Dongmei, Mao Zongyuan. Hardware Implementation Study of A New
Associative Memory Neural Network [J]. Computer Engineering and Applications. 2003:14:25-29.

[4] Murray, A.F.; Del Corso, D.; Tarassenko, L. Pulse-stream VLSI neural networks mixing
analog and digital techniques [J]. IEEE Transactions on Neural Networks. 1991:2 (2):193-204.

[5] Granado, J.M.; Extremadura Univ.; Caceres; Vega, M.A.; Perez, R.; Sanchez, J.M.
Using FPGAs to Implement Artificial Neural Networks [C]. 13th IEEE International Conference on
Electronics, Circuits and Systems. Nice, 2006:934-937.

[6] Abramson, D.; Smith, K.; Logothetis, P.. FPGA Based Implementation of a Hopfield Neural
Network for Solving Constraint Satisfaction Problems [C]. Proceedings 24th Euromicro Conference.
Vasteras, 1998:2:688-693.

[7] Liu Peilong. The Research and Design of Hardware Implementation of Neural Network Based
on FPGA [D]. Master Degree Thesis, University of Electronic Science and Technology of China.
2012.

674

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Granado,%20J.M..QT.&searchWithin=p_Author_Ids:37698658500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vega,%20M.A..QT.&searchWithin=p_Author_Ids:37685571100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Perez,%20R..QT.&searchWithin=p_Author_Ids:37285700300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sanchez,%20J.M..QT.&searchWithin=p_Author_Ids:37690723800&newsearch=true

[8] XUE Wei-qin, LI Li-hua, DAI Ming. Implementation method of ANN system based on FPGA
[J]. Electronic Design Engineering. 2010:18 (9):151-154.

[9] Gao Juan. Theory and Simulation Examples of Artificial Neural Network Second Edition [M].
Beijing: China Machine Press. 2007:6-17.

675

