
 

Stabilization of complex-valued neural networks with time-varying 
delays via linear feedback control 

Zhenjiang Zhao1, a and Qiankun Song 2,b  
1 Department of Mathematics, Huzhou University, Huzhou 313000, China 

2 Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China 
azhaozjcn@163.com, bqiankunsong@163.com 

Keywords: Complex-valued neural networks, delay, stability, complex-valued linear matrix 
inequality.  

Abstract. In this paper, a class of complex-valued neural networks with time-varying delays is 
considered without assuming the differentiability of the time-varying delays, and the exponential 
stabilization for the considered neural networks is investigated. By constructing proper 
Lyapunov-Krasovskii functional and using the matrix inequality techniques, a delay-dependent 
criterion for checking the stability of the considered neural networks is presented under designed 
linear feedback controller. An example with simulations is given to show the effectiveness of the 
obtained result. 

Introduction 

In the past decade, delayed neural networks have been successfully applied in many areas such as 
signal processing, pattern recognition, associative memories, and optimization solvers [1]. Some of 
these applications require the designed neural network to be stable, and it is therefore important to 
study the stability of neural networks [2]. A great number of results have been reported on the 
stability for various neural networks with constant delays or time-varying delays in the literature for 
example, see [1, 2, 3, 4, 5, 6] and references therein. 

As an extension of real-valued neural networks, complex-valued neural networks with 
complex-valued state, output, connection weight, and activation function become strongly desired 
because of their practical applications in physical systems dealing with electromagnetic, light, 
ultrasonic, and quantum waves[7]. In fact, complex-valued neural networks (CVNNs) make it 
possible to solve some problems which cannot be solved with their real-valued counterparts. For 
example, the XOR problem and the detection of symmetry problem cannot be solved with a single 
real-valued neuron, but they can be solved with a single complex-valued neuron with the orthogonal 
decision boundaries, which reveals the potent computational power of complex-valued neurons[8]. 
Besides, CVNNs has more different and more complicated properties than the real-valued ones [9]. 
Therefore it is necessary to study the dynamic behaviors of CVNNs deeply [10]. Recently, some 
stability results of CVNNs have been obtained, for example, see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21, 22] and references therein. 

In practice, it may happen that the delayed neural networks are unstable or the convergence rate 
can not meet the requirements. Under this case, certain controllers may be designed such that the 
controlled delayed neural networks achieve the desired stability properties.  In recent years, many 
control approaches have been developed to stabilize chaotic complex-valued neural networks such as 
adaptive control, fuzzy control, sampled-data control, impulsive control and intermittent control and 
so on. However, To the best of our knowledge, up to now, there are very few results on the 
stabilization problem of CVNNs.  

Motivated by the above discussions, the objective of this paper is to study the exponential 
stabilization of CVNNs with time-varying delays. 
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Preliminary 
In this paper, we consider the following CVNNs with time-varying delays 

)()))((())(()()( tuttxBftxAftDxtx +−++−= t                                (1) 
for 0tt ≥ , where )(tx  is the state vector of the network at time t , n corresponds to the number of 
neurons; D  is a positive diagonal matrix, A and B are known constant matrices; ))(( txf denotes the 
neuron activation at time t ; )(tu is a external input vector; )(tt is delays and satisfy tt ≤≤ )(0 t . To 
order to stabilize the origin of neural networks (1) by means of feedback control, we assume that the 
control exposed on the system is of the form 

)()( tKxtu =                                                                (2) 
where K is the control gain matrix. With control law (2), model (1) can be rewritten as 

)))((())(()()()( ttxBftxAftxDKtx t−++−=                               (3) 
Model (1) is supplemented with initial value given by )()( ssx ϕ= , ],[ 0ts t−∈ , where is bounded 

and continuously differential on ],[ 0ts t−∈ . 
Throughout this paper, we make the following assumption: 

Assumption 1. For any nj ,,2,1 = , 0)0( =jf and there exists a positive diagonal matrix 
),,,( 21 nllldiagL =  such that for any Cyx ∈, , 

yxlyfxf jjj −≤− )()(                                            (4) 

Main Results 
Theorem 1. Assume that the assumption 1 holds. For viven constant 0>α , if there exist three 

symmetric positive definite Hermitian matrices 1P , 2P and 3P , two positive diagonal matrices R and 
S , and four matrices 1Q , 2Q , W  and Z  such that the following complex-valued linear matrix 
inequality holds: 
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jiij Ω=Ω , and  
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377 P−=Ω , 388 P−=Ω , and the rest of  ijΩ are zero, then the origin of system (3) is globally 
exponerntially stable, and the gain matrix of control law (2) is 

ZWK 1−=                                                  (6) 
Proof. Consider the following  Lyapunov-Krasovskii functional as 
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Calculating the time derivative of )(tV , we obtain 
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It follows from (10)-(12) that 
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By Newton-Leibniz formulation, we have 
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In addition, we can obtain from Assumption 1 that 
)()())(())((* tLRLxtxtxRftxf ≤                                                 (16) 

)()())(())((* tttt −−≤−− tLSLxtxtxSftxf                            (17) 
From model (3), we have that 
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It follows from inequality (13)-(18) that 
              )()()()( * tttVtV ηηα Θ+−≤                                       (19) 

where ******* )))(()),((),()),((),(),(()( tttη −−−= txftxftxttxtxtxt  , and ( )
66×

Θ=Θ ij  with 
*
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1
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2
1

323333 QPQ −+Ω=Θ , the rest of  ijΘ  are ijΩ . 
From Schur theorem, we know that 0<Ω  is equivalent to 0<Θ . Therefore, we have from 

inequality (5) and (20) that 
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Inequality (21) implies model (3) is globally exponentially stable. The proof is complete. 
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Example 
In this section, we will provide an example to illustrate the effectiveness of the obtained result. 

Consider a 2-dimensional neural networks (1) , where 
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It is easy to see that 8)( =tt , and Assumption 1 is satisfied with 
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L . Taking 1.0=α , by 

the YALMIP toolbox in MATLAB ,  we can find a solution to the complex-valued linear matrix 
inequality (5) as follows: 
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Therefore, by Theorem 1, we know that the origin of system (3) is globally exponerntially stable, 
and the gain matrix of control law (2) is 
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The numerical simulation is shown in figure 1 and figure 2. 
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Conclusions 
In this paper, the stabilization problem for a class of complex-valued neural networks with 

time-varying delay has been investigated. A delay-dependent criterion for checking the stability of 
the considered neural networks has been obtained by constructing proper Lyapunov-Krasovskii 
functional and using the matrix inequality techniques. An example with simulations is also given to 
show the effectiveness of the obtained result. 
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