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Abstract.In this paper, a class of discrete-time complex-valued neural networks with time-varying
delays and impulses are considered. Based on M-matrix theory and analytic methods, several
simple sufficient conditions checking the global exponential stability are obtained for the
considered neural networks. The obtained results show that the stability still remains under certain
impulsive perturbations for the neural network with stable equilibrium point, and the neural network
with unstable equilibrium point can be stabilization by impose appropriate impulsive perturbations.

Introduction

The complex-valued neural networks (CVNN) have found important applications in various
areas such as static image processing and solving nonlinear algebraic equations [1]. Some of these
applications require that the designed CVNN has a unique stable equilibrium point. In hardware
implementation, time delays occur due to finite switching speed of the amplifiers and
communication time [2]. Therefore, study of CVNN with consideration of the delayed problem
becomes extremely important to manufacture high quality CVNN. In recent years, some results
concerning the stability of CVNN without or with delays have been reported, for example, see [2, 3,
4,5,6,7,8,9, 10, 11, 12, 13] and references therein. In [2, 3, 4], authors investigated the stability
of continuous-time CVVNN without delays, and provided several stability criteria for the considered
CVNN. In [5, 6, 7, 8], authors considered a class of continuous-time CVNN with constant delays,
and obtained some sufficient condition of stability for the studied CVNN. In [9], a class of
continuous-time CVNN with both discrete time-varying delays and unbounded distribute delays
were considered, a main criterion for assuring the existence, uniqueness and exponential stability of
the equilibrium point of the system are derived by using the vector Lyapunov function method,
homeomorphism mapping lemma and the matrix theory. As pointed out in [10], in numerical
simulation and practical implementation of the continuous-time neural networks, it is essential to
formulate a discrete-time system that is an analogue of the continuous-time system. Therefore, it is
of both theoretical and practical importance to study the dynamics of discrete-time neural networks.
Some results on stability of discrete-time CVNN without or with delays have been reported [10, 11,
12].

However, besides delay effect, impulsive effect likewise exists in neural networks [13]. For
instance, in implementation of electronic networks, the state of the networks is subject to
instantaneous perturbations and experiences abrupt change at certain instants, which may be caused
by switching phenomenon, frequency change or other sudden noise, that is, does exhibit impulsive
effects. Therefore, it is necessary to consider both impulsive effect and delay effect on dynamical
behaviors of neural networks. In [13], authors considered a class of continuous-time CVNN with
impulses and three kinds of delays including leakage delay, discrete delay and distributed delay, and
gave several delay-dependent stability criteria. To the best of our knowledge, few authors have
considered the problem on stability of discrete-time CVNN with variable delays and impulses.

Motivated by the above discussions, the objective of this paper is to study the global exponential
stability of discrete-time CVNN with variable delays and impulses.
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Notations: For u=(u,,u,,~--,u,)" and A:(aij)nxneR”X” ctet ful = (uglfusl o Jua )

=3 )+ 1= e
interval given N[a,b]= {a a+l--,b-1b} , C(N[-7,0}R") denotes the set of all
functions ¢ : N[-7,0] » R"

)nn. For integers a and bwitha<b, N[a,b] denotes the discrete

Model Description and Preliminaries
In this paper, we consider the global exponential stability of the following model

u,(m+1) =d.u (m)+2a” (U, )+ Zbu (U, m=z,(m))+1, m=m,,

u, (M) = py(u, (m™ ),u2<m ), Uy (M ))+Jik m=m,, (1)
u, (s) = ¢(s), seN[m, -z,m,]

for m>m,,i=12,---,n, k=12,---, where n corresponds to the number of units in the neural
network; u;(m) corresponds to the state of the ith unitattime m; f, isthe activation function;
7; () corresponds to the transmission delay along the axon of the j th unit from the ith unit and
} (0<d, <1),

A:(aij) and B =(b..) are constant matrix. m, are called impulsive moments and satisfy
nxn

satisfies 0<z;(m)<r (z is a nonnegative integer); D = diag{d,.d,,-,d

'~n

0<m <m, <.+, limm, =+40; p, (ul(m‘),~--,un(m‘)) represents impulsive perturbations of

K—>+00

the ithunitattime m,; I, and J, are constants.
If p,(u,-u)=u and J, =0 (i=12,-,n  k=12,-) then model (1) turns to

'~n

non-impulsive discrete-time CVNN with variable delays
u (m+1) = d,u, (m) +ZaIJ fi(u; (m))+Zb“ JUym=z (M) +1; i=12--,n. (2)

In stability analysis of model (1), we make the following assumptions:
(H1) If (u;,u,,---,u’)" isan equilibrium point of model (2), then the impulsive jumps of model

(1) satisfy the following conditions u; = p, (u;,U,,---,u ) +J,, k=12,---,i=12,---,n
(H2) There exist a positive diagonal matrix F =diag(F,,F,,---,F,) such that
| (u,) - f,(u,)| < Flu, —u,|, forall u,u,eC, i=12-,n

(H3) There exist nonnegative matrices P, = diag{R,,P,.,---,P,} such that
|pik(ul"“'un)_pik(vl’”"vn)|spik|ui_Vi|’
forall (u,---,u )" €C", (v,,---,v,) €C", i=12,---,n, k=12,

Main Result

Theorem 1: Under assumptions (H1)-(H3), model (1) has a unique equilibrium point, which is
globally exponentially stable, if the following conditions are satisfied

(i) W=E-D- QA| + |B|)F is a non-singular M -matrix.
(i1) There exists a constant A4 such that
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Iny,

<l<e k=12, 3)
mk _mk—l
where
7 = max{L, Py, P, -+, Py} (4)
for k=1,2,---, and
- & (1_di)+Z§ij (lay; [+€ | by ) <0, (5)
=1

for 1=12,---,n,&=(&,&,,-++,&,) >0 satisfies WE > 0.
Proof. Let ¢(u)= (¢, (u).¢@,U), - ¢, ()", where

@i (u) =—Q1-d;)y, +Zn:aijfj(uj)+zn:bijfj(uj)+|i, i=12,---,n.

In the following, we shall prove that ¢(u) is a homeomorphism of C" onto itself.

First, we prove that ¢(u) is an injective mapon C".

In fact, if there exist x=(x, X, X, ) , y=(¥;.Y,,--~y,) €eR"and x=y such that
@(X) = @(y), then (l_di)(xi - yi)= Z(aij +bijxfj(xj)_ fj(yj)) i=12,---,n.

j=1

It follows from (H2) that (1-d,)x —y|< ZQaij‘+‘bij ‘)Fj‘xj - yj‘ for i=12,---,n. That is
j=1
qul - y1|'|X2 - Y2|""’|Xn - yn|)T <0.

From W isan M -matrix, we can get that x; =y,, i=12,---,n, which is a contradiction. So
o(u) isaninjectiveonC".

Second, we prove that [p(u)|— +o as |uf - +oo.

Let @(u) = (¢, (u), @, (u),--,@,(u)", where @, (u) =—{1-d; ), +Z(aij +binfj(uj)_ f,-(o))
i1
for i1=12,---,n. We have from
u @)+ (U< 22[— (1—di)|ui|2 +anu‘+‘bu ‘)Fj|ui|-‘uj‘j
i-1 j=1
= —2|u|TW|u|
<22, W U
When |u| =0, we have [@p(u)> A, W )u|. Therefore |p(u)]—+w as u—+wo, which
implies [(u)] >+ as u—>+00. Thus ¢(u) is a homeomorphism of R" to itself, which
implies that model (2) has a unique equilibrium pointu™ = (uluzun)T . From assumption (H1),

we know that u” is also a unique equilibrium point of model (1).

In the following, we will prove that this unique equilibrium point u” of model (1) is globally
exponentially stable. Let

yi(m)=u;(m)-u;, fj(yj(m)): fj(yj(m)+u’j’)— fj(“’jc)’

5ik (yl(m)"“’ yn(m)): Pik (Y1(m)+uf""’ yn(m)+u:)_ Pi (u;""’U:)’
then model (1) can be rewritten as
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yi(m+1):diyi(m)+_ aiij(yj(m))+ aiij(yj(m_Tij(m)))’ m=#m,,

yi(m)zﬁij(yl(m_)a yz(m‘),~--,yn(m‘)), m=m,. (6)
yi(s)=(s)-u;, seN[m,-z,m]

It follows from (H2) that
ly;(m+1) <d]y, (m)|+Z‘aij‘Fj‘yj(m)‘+2‘bij‘Fj‘y1(m—rij (m)} m=#m, (7)
i=1 j=1
for i=12,---,n,k=12,---.
Since W isan M -matrix, there exists a vector & =(&,,&,,---,&, )" such that

—§i(1—di)+zn:.§jFJQaij‘+‘bij‘)<0 for i=12,---,n. We can choose a small enough &>0
=1
such that
~&(-d,) Z;FJ(] a,|+e”

for i=12,---,n. Let x (m)=e*™™)
that
x,(m+1) = e ™™y, (m+1)

b,|)< 0 ®)

y;(m), i=12,--,n.Then, we have from inequality (7)

n o (9)
{dx( m)+ Z‘aij‘FJxJ Ze b”‘Fij(m T, (m))]
j=1
. _p-v
for i=12,---,n.Let |, , then
- minfg,}
(s)<yi(s) =|ui s —mk¢—wkam (10)
fOI‘SE N[m —7,m ] i=12,---,n. Infollowing, we prove that for any |e{ 2, } inequality
i( )Ségilm mEN[mo’ml) (11)

holds.
In fact, if inequality (11) is not true, then there exists some r and m” e N[m,,m,) such that
xr(m* +1)> £y, and xj(m)z Ely for me N[m0 —r,m*], j=12,---,n
However, from inequality (8) and (10), we have
i =rfo))

e e
se{drfﬁzn:a Fjgj]IO
S‘;‘:rIO’

this is a contradiction. So inequality (11) is true. Thus,

[yi(m)<&loe ™™, meN[m;,m,) (12)
for i=12,---,n
In the following, we will use the mathematical induction to prove that

|yi(m)| <yl Viadiloe™ - mO)' me [mk—llmk)’ i=12,---,n (13)
for k=12,---,wherey, =1.

rj

xr(m*+1)£ eg[drxr(m*)

j=1

Fié +Zle”b
]=

1 1
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Whenk =1, from inequality (12) we know that inequality (13) holds.
Suppose that the following inequalities

|yi(m)|g7071 Vadile™ #(n= mO) me N[mk—l’mk)’ i=12,---,n (14)
hold for k =1,2,---,h.

From assumption (H3) and inequality (14), we know that the second equation of model (6)
satisfies

|y )|< Plh‘y 1< PoYors 7/h71§i|oeig(mh7m°) i=12,---,n (15)
It follows from inequality (4) and (15) that
V(M) < 7ory - Fpan&iloe™ ™™, meN[m,-7z,m,], i=12,--,n
Thus
% (M)< 707y Voa?nEilos meN[m, —z,m,}, i=12,---,n (16)
In the following, we will prove that
Xi(m)37071"'7h717h§i|0’ meN[mh’mh+l)’ i=12,---,n (17)
holds.

If inequality (17) is not true, then there exists some | and m™ e N[m,,m, ) such that

Xl(m**+1)>7071"'7/h—17/h§||0 and Xj(m)57071"'7h—17/h§j|0 for meN[mo_Tvm**] ,
j :1,2’...,[‘]
However, from inequality (8) and (9), we have

x,(m**+1)ge{d,x,(m**)+§ia,jipj « (m )@em

by [y, (™ =, **))J

<Y "’7h-17he£(d|¢fl +i‘alj‘Fj§j+ie”qalj‘+‘ﬂlj‘)Fj§j jlo
=t o1

<yo¥a e YnaZnSilos
this is a contradiction. So inequality (17) is hold.
By the mathematical induction, we can conclude that inequality (13) holds.
From inequality (3), (13) and the definition of 1, we have

~(e=2)(m-mo )

|yi (m)| < ei(mrmo)eﬂ(mz*ml) . ei(mkfrmkfz)é:i |0e—5(m—mo) < _é:i H¢ —-u”
m.'n{égi}

1<i<n

for meN[m,_,,m, ), i=12,---,n,k=12,---. So Hu(m)—u*Hs I\/IH¢—u*He‘(5"”(m‘m°)

1
for meN[mO,+oo where M = [25 j /nm . The proof is completed.

I<i<n
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