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Abstract.In this paper, a class of discrete-time complex-valued neural networks with time-varying 
delays and impulses are considered. Based on M-matrix theory and analytic methods, several 
simple sufficient conditions checking the global exponential stability are obtained for the 
considered neural networks. The obtained results show that the stability still remains under certain 
impulsive perturbations for the neural network with stable equilibrium point, and the neural network 
with unstable equilibrium point can be stabilization by impose appropriate impulsive perturbations. 

Introduction 
The complex-valued neural networks (CVNN) have found important applications in various 

areas such as static image processing and solving nonlinear algebraic equations [1]. Some of these 
applications require that the designed CVNN has a unique stable equilibrium point. In hardware 
implementation, time delays occur due to finite switching speed of the amplifiers and 
communication time [2]. Therefore, study of CVNN with consideration of the delayed problem 
becomes extremely important to manufacture high quality CVNN. In recent years, some results 
concerning the stability of CVNN without or with delays have been reported, for example, see [2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and references therein. In [2, 3, 4], authors investigated the stability 
of continuous-time CVNN without delays, and provided several stability criteria for the considered 
CVNN. In [5, 6, 7, 8], authors considered a class of continuous-time CVNN with constant delays, 
and obtained some sufficient condition of stability for the studied CVNN. In [9], a class of 
continuous-time CVNN with both discrete time-varying delays and unbounded distribute delays 
were considered, a main criterion for assuring the existence, uniqueness and exponential stability of 
the equilibrium point of the system are derived by using the vector Lyapunov function method, 
homeomorphism mapping lemma and the matrix theory. As pointed out in [10], in numerical 
simulation and practical implementation of the continuous-time neural networks, it is essential to 
formulate a discrete-time system that is an analogue of the continuous-time system. Therefore, it is 
of both theoretical and practical importance to study the dynamics of discrete-time neural networks. 
Some results on stability of discrete-time CVNN without or with delays have been reported [10, 11, 
12]. 

However, besides delay effect, impulsive effect likewise exists in neural networks [13]. For 
instance, in implementation of electronic networks, the state of the networks is subject to 
instantaneous perturbations and experiences abrupt change at certain instants, which may be caused 
by switching phenomenon, frequency change or other sudden noise, that is, does exhibit impulsive 
effects. Therefore, it is necessary to consider both impulsive effect and delay effect on dynamical 
behaviors of neural networks. In [13], authors considered a class of continuous-time CVNN with 
impulses and three kinds of delays including leakage delay, discrete delay and distributed delay, and 
gave several delay-dependent stability criteria. To the best of our knowledge, few authors have 
considered the problem on stability of discrete-time CVNN with variable delays and impulses. 

Motivated by the above discussions, the objective of this paper is to study the global exponential 
stability of discrete-time CVNN with variable delays and impulses. 
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Model Description and Preliminaries 
In this paper, we consider the global exponential stability of the following model 
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for 0mm ≥ , ni ,,2,1 = , ,2,1=k , where n  corresponds to the number of units in the neural 
network; )(mui  corresponds to the state of the i th unit at time m ; jf  is the activation function; 

)(mijτ corresponds to the transmission delay along the axon of the j th unit from the i th unit and 
satisfies ( ) ττ ≤≤ mij0 ( τ is a nonnegative integer); { }nddddiagD ,,, 21 =  ( 10 ≤≤ id ), 

( )
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×
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≤≤≤ 210 mm , +∞=
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mlim ; ( ) ( )( )−− mumup nik ,,1   represents impulsive perturbations of 

the i th unit at time km ; iI  and ikJ  are constants. 
If ( ) inik uuup =,,1   and 0=ikJ  ;,,2,1( ni =  ),2,1 =k then model (1) turns to 

non-impulsive discrete-time CVNN with variable delays 
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In stability analysis of model (1), we make the following assumptions: 
(H1) If T

nuuu ),,,( **
2

*
1   is an equilibrium point of model (2), then the impulsive jumps of model 

(1) satisfy the following conditions .,,2,1,,2,1,),,,( **
2

*
1

* nikJuuupu ikniki  ==+=  
(H2) There exist a positive diagonal matrix ),,,( 21 nFFFdiagF =  such that 

2121 )()( uuFufuf iii −≤− , for all Cuu ∈21 , , ni ,,2,1 = . 
(H3) There exist nonnegative matrices },,,{ 21 nkkkk PPPdiagP =  such that 

iiikniknik vuPvvpuup −≤− ),,(),,( 11  , 

for all nT
n Cuu ∈),,( 1  , nT

n Cvv ∈),,( 1  , ni ,,2,1 = , ,2,1=k . 

Main Result 
Theorem 1: Under assumptions (H1)-(H3), model (1) has a unique equilibrium point, which is 

globally exponentially stable, if the following conditions are satisfied 
(i) ( )FBADEW +−−=  is a non-singular M -matrix. 
(ii) There exists a constant λ  such that  
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where 
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In the following, we shall prove that )(uϕ  is a homeomorphism of nC  onto itself. 
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When 0≠u , we have ( ) ( ) uWu min
~ λϕ ≥ . Therefore ( ) +∞→uϕ~  as +∞→u , which 

implies ( ) +∞→uϕ  as +∞→u . Thus ( )uϕ  is a homeomorphism of nR  to itself, which 

implies that model (2) has a unique equilibrium point ( )Tnuuuu **
2

*
1

* ,,, = . From assumption (H1), 
we know that *u  is also a unique equilibrium point of model (1). 

In the following, we will prove that this unique equilibrium point *u  of model (1) is globally 
exponentially stable. Let 
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 When 1=k , from inequality (12) we know that inequality (13) holds. 
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