
 

Testing for elliptical symmetry of errors in the multivariate linear 
regression model 

 Yan Su a, Shao-Yue Kang b 

School of Mathematics and Physics, North China Electric Power University,  
Baoding, 071003, China  

aemail: suyanhd@163.com, bemail:kangsy5@163.com 

Keywords: Linear model; Errors; Elliptical symmetry; Goodness-of-fit; Bootstrap approximation 

Abstract. This paper presents a characteristic test for testing the elliptical distribution of the errors 
in the multivariate linear regression model. We obtain the asymptotic spherical distribution of the 
transformed residuals of the regression model under the null hypothesis. Based on bootstrap 
approximation, an algorithm is given to estimate the critical values of the test. The test statistic 
possesses symmetry and then the test power can be enhanced. The test is practical to implement for 
arbitrary dimension of the errors. 

Introduction 

A multivariate linear model describes the relationship between a response vector y and a vector x  
of covariables. Let 1, , ny y be n independent observation vectors in mR , following the model 

                   ' ' ' , 1, , n,j j jy x jβ ε= + =                                (1) 
                               ( ) 0,Cov( )j jE ε ε= = Σ ,                                    (2) 

where the prime '“”denotes transpose, the design vectors p
jx R∈ are assumed to be 

nonrandom, β is an unknown p m× matrix of parameters called regression coefficients, 
, 1, ,j j nε =   are the m - vectors of errors, andΣ is an unknown m m× positive definite matrix. 
The family of elliptically symmetric distributions is a natural extension of the family of 

multivariate normal distributions. It contains short-tailed and long-tailed distributions, including 
symmetric Kotz type distributions, symmetric multivariate Pearson Types VII and II distributions. 
The errors in a multivariate regression model can be assumed to have an elliptical distribution when 
the normality assumption fails.  

In this paper, we consider the multivariate linear model with errors jε  in (1)–(2) having an 
elliptical distribution. To avoid wrong conclusions in regression analysis, the distributional 
assumption on the errors should be checked. Let F be the unknown distribution of the errors jε and 
let 0F be the elliptical distribution. We want to test the hypothesis 
                                 0=F F .                                            (3) 

Gamero, García and Mejías proposed a goodness-of-fit test for any fixed distribution of errors in 
multivariate linear models[1]. Su and Yang presented a goodness-of-fit test for uniformity on the 
surface of a unit sphere based on generalized inverse, the test possesses symmetry and has nice 
properties[2].  

Let mΩ denote the surface of a unit sphere centered at the origin in mR and let ( )mU Ω denote the 
uniform distribution on mΩ . Let ˆ jε be the residuals of the multivariate linear regression model. The 
asymptotic null distribution of the transformed residuals is a spherical distribution. Based on a 
simple property for the spherical distribution, the goodness-of-fit test for the elliptical distribution 
of the errors jε in (1) can be translated into the goodness-of-fit test for ( )mU Ω . We introduce a 
characterization-based test for the elliptical distribution of the errors jε in (1). The transformation 
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based on Cholesky decomposition leads to the transformed residuals whose joint distribution 
asymptotically does not depend on the unknown matrix mΣ of the elliptical distribution. Hence, the 
critical values can be approximated by Monte Carlo and bootstrap samples.  

The paper is organized as follows. In Section 2, we introduce the multivariate linear regression 
model and some lemmas. In Section 3, the generalized inverse-based test for the elliptical 
distribution of the errors is proposed. The asymptotic null spherical distribution of the transformed 
residuals is obtained. In Section 4, the algorithm to estimate the critical values is given. The 
conclusion and a possible extension of the obtained results are present in Section 5. The proofs of 
Theorem1 and Lemma2(b). are postponed to Appendix.                            

The multivariate linear model and some lemmas  

Definition1[3] Let (m) ( )mU U Ω . An 1m× random vectorς is said to have a spherical distribution 

if ς has a stochastic representation (m)
d

Uς κ= ⋅ for some random variable 0κ ≥ , which is 

independent of (m)U . Here
d
= signifies that the two sides have the same distribution. 

Definition2[3] Let 'A be an m m× matrix of rank m and '
m A AΣ = . An 1m× random vector η is 

said to have an elliptical distribution with parameters ( 1)mm × and mΣ if 

                               ' ( )
d

dAUη m κ= + ,                                      (4) 

where random variable 0κ ≥  is independent of (m)U . We shall use the notation ~ ( , )m mECη m Σ .   
Let nI denotes the n n× identity matrix and let 

                    
' ' '

1 1 1( , , ) , ( , , ) , ( , , )n n nY y y X x x ε ε ε= = =                     (5) 
Then the multivariate linear model (1)-(2) takes the form 

                              Y X β ε= + ,                                        (6) 

                        ' '[ ( )] 0, Cov[ ( )] ,nE vec vec Iε ε= = ⊗Σ                            (7) 
whereY andε are n m× random matrices, X is a known n p× matrix, and β is an unknown p m×  

matrix. Here, the sign⊗ denotes the kronecker product of matrices.  
The multivariate linear model (6) -(7) generalizes the multiple linear model ( 1m = ) by allowing a 

vector of observations, given by the rows of a matrixY , to correspond to the rows of the design 
matrix X . 

Lemma1[3]
 Assume that ~ ( , )m mECη m Σ with 2( )E κ < ∞ , whereκ is defined in (4). Let ( )Cov η  

denotes the covariance matrix of η . Then ( )Cov η exists and  

                        
2( )( ) ,Cov( ) = m

EE
m
κη m η= = Σ Σ . 

Lemma2 Let the model Y X β ε= +  be defined in (6). Let 1, , nε ε be i.i.d. ~ (0, )m mEC Σ , 
where 1, , nε ε are defined by (5) and 1( )=Cov ε Σ exists. Let rank ( )X p= and let                        

 ' 1 '( )XP X X X X−= .                                 (8) 

Let β̂ be the least squares estimate of β , i.e., ' 1 'ˆ=( )X X X Yβ − . Let 

                  '
1

ˆˆ ˆ ˆ( , ) ,n Y Xε ε ε β= = −  '1ˆ ˆ ˆ=
-n p
ε εΣ , '1lim ,

n
X X D

n→∞
=                 (9) 

where D is a positive definite matrix. Then (a).[4]  

                    '
1ˆ ˆ ˆ( , , ) ( )n n XI Pε ε ε ε= = − ,    ˆ , ,

P
nβ β→ →∞                      (10) 

where
P
→denotes convergence in probability as n →∞ . 
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(b).                         ˆ , ,
P

nΣ→Σ →∞                                        (11) 
Lemma3[3] Assume that ~ (0, )m mECϕ Σ with Rank ( )=m mΣ , B is an m m× matrix. Then 

                                 ' '~ (0, )m mB EC B Bϕ Σ . 
Lemma4[5] Let ,i i nε ≤  be defined in (5). Let 1, , nε ε be i.i.d. ~ (0, )m mEC Σ and 

let '= / ( ).n pε εΣ −  Let the Cholesky decomposition of Σ be '[ ( )][ ( )]L LΣ = Σ Σ   , where ( )L Σ is lower 
triangular with positive diagonal elements . Let  
                        1[ ( )] , 1, , n,i iw L iε−= Σ =

  '
1( , , )nW w w=  .                  (12) 

Then the distribution of W does not depend on mΣ . 
Lemma5[3] If An 1m× random vectorς has a spherical distribution then 

~ ( )mUς ς Ω ,  

where ⋅  denotes the Euclidean norm. 

Lemma6[2] Let (m) '
1( , , ) ~ ( )m mU U U U= Ω and let (m) 2 2 ' (m) '

1( , , ) , (1/ , ,1/ )mG U U m mm= =  .  
Let (m) '

1( , , ) , 1, ,i i miU U U i n= =   be i.i.d. ~ ( )mU Ω and let 

                   2

1

1 , 1, , ,
n

jn ji
i

Q U j m
n =

= =∑   (m) '
1( , , )n n mnV Q Q=  .                 (13) 

Then  
(a). The covariance matrix of (m)G is an m m× matrix 2 2( )ija Mσ σ⋅ = with 

    2
2

2 , ( ),
( 2) ijM a

m m
σ = =

+
                               (14) 

1, 1, , , 1, , 1, , ,ii ija m i m a i j m i j= − = = − = ≠  . 

(b). rank ( ) 1M m= − and + 2(1/ )M m M= .  

(c).                   (m) (m) 2( ) (0, )
d

n n mR n V N Mm σ= − →                         (15) 
' 2 2

1,
d

n n mR M R nσ χ− −
−→ →∞ , ' 2 2

1= ( ) ,
d

n n mR m MR nγ σ χ−
−→ →∞ ,                              

where
d
→ denotes convergence in distribution as n →∞ , 2

1mχ − is the chi-squared distribution 
with 1d −  degrees of freedom. 

Remark1 ( ) 1( )=m
mCov U m I− corresponds to the moment of inertia of ( ) ~ ( )m

mU U Ω . Consider a 
system of n particles on mΩ with unit mass. If the n  particles are uniformly distributed on mΩ , 
then the moment of inertia of the system about arbitrary unit vector should be nearly the same. 

Goodness of fit test for the elliptical distribution of errors 

LetΣ and Σ̂ be defined in (7) and (9), respectively. Let the Cholesky decomposition of Σ , Σ̂ and 
mΣ be 

     ' ' 'ˆ ˆ ˆ[ ( )][ ( )] , [ ( )][ ( )] , [ ( )][ ( )]m m mL L L L L LΣ = Σ Σ Σ = Σ Σ Σ = Σ Σ ,                 (16) 
respectively. Let 1L− be the inverse of L and let îε be defined in (9). Let  

1ˆ ˆ[ ( )] , 1, , n,i iz L iε−= Σ =   '
1( , , )nZ z z=  ,                      (17) 

(m) '
1( , , ) , 1, ,i i i i miz z i nξ ξ ξ= = =  , (m) (m) (m) '

1( , , )nψ ξ ξ=  .            (18) 
Theorem1 Let the conditions of Lemma2 hold. Let the n m× matrix Z and the -m vectors 

(m) ,i i nξ ≤  be defined in (17) and (18), respectively. Let 2 1 ( )m Eα κ−= with 0α > , where κ is 
defined in (4). Then  

1016



 

(a). The asymptotic distribution of iz is 2(0, )m mEC Iα − , which we write as 
-2~ (0, )

a

i m mz EC Iα , 1, ,i n=  . 
(b). 1, , nz z are asymptotically independent and the distribution of Z asymptotically does not 

depend on the parameter mΣ of (0, )m mEC Σ . 
(c). The asymptotic distribution of (m)

iξ is ( )mU Ω and (m) (m)
1 , , nξ ξ are asymptotically 

independent. 
Let (m) '

1( , , )i i miξ ξ ξ=  be defined in (18) and let 2σ and M are defined in (14), respectively. Let 

2

1

1 , 1, , ,
n

jn ji
i

Q j m
n

ξ
=

= =∑

  (m) '
1( , , )n n mnV Q Q=  

 ,                  (19) 

                       (m) (m)( )n nR n V m= −  ,  ' 2ˆ= ( )= ( )n nT T R m MRε σ −
  ,                  (20) 

where ( )mm is defined in (15). 
Remark2 Consider the null hypothesis (3), where 0F denotes the (0, )m mEC Σ distribution with the 

parameter mΣ unknown. By Theorem1, the goodness-of-fit test for 0F can be translated into the 

goodness-of-fit test for (m) ~ ( )
a

i mUξ Ω , 1, ,i n=  . By Lemma6(c), the elliptical symmetry is rejected 
for large values of ˆ( )T ε in (20). 

The algorithm to implement the test statistic 
The algorithm to compute the test statistic. 
The algorithm to compute ˆ( )T ε in (20) consists of the following steps: 
1. Compute the values of ε̂ and Σ̂ in (9), respectively. 
2. Compute the value of Z in (17). 
3. Compute the value of (m)ψ in (18). 
4. Compute the value of (m)

nV in (19). 
5. Compute the values of nR and ˆ( )T ε in (20), respectively.  
The elliptical symmetry is rejected for large value of ˆ( )T ε . 
The algorithm to estimate the critical values. 
Let iz be defined in (17) and let 

                           = , 1, , ,i iz i nτ =                                    (21) 

where ⋅ denotes the Euclidean norm. The bootstrap method uses the empirical distribution of 
, 1, ,i i nτ =   to approximate the distribution of κ in (4).  

  The algorithm to estimate the critical values of ˆ( )T ε consists of the following steps: 
1. Sample 1 , , nτ τ∗ ∗

  with replacement from the values 1, , nτ τ .  
2. Generate 1 , , nU U∗ ∗

 which are i.i.d. uniform on .mΩ  Compute , 1, , .i i iU i nε τ∗ ∗ ∗= =   
3. Let '

1( , , )nε ε ε∗ ∗ ∗=  . Compute '
1ˆ ˆ ˆ( , , ) ( )n n XI Pε ε ε ε∗ ∗ ∗ ∗= = − , where XP is defined in (8). 

4. Compute 'ˆ ˆ ˆ=[ ] / ( )n pε ε∗ ∗ ∗Σ − , 1ˆ ˆ[ ( )] , 1, , n,i iz L iε∗ ∗ − ∗= Σ =   where 'ˆ ˆ ˆ[ ( )][ ( )]L L∗ ∗ ∗Σ = Σ Σ  
( the Cholesky decomposition). 

5. Compute '
1( , , ) , 1, ,i i i i miz z i nξ ξ ξ∗ ∗ ∗ ∗ ∗= = =  . 

6. Compute 2

1

1 [ ] , 1, , ,
jn

n

ji
i

Q j m
n

ξ∗ ∗

=

= =∑

  
1

'( , , )
n mnnV Q Q∗ ∗ ∗=  

 . 
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7. Compute (m)( )
n nR n V m∗ ∗= −  , where (m) '(1/ , ,1/ )m mm =  . 

8. Compute ' 2ˆ= ( )=[ ] ( )
nnT T R m MRε σ∗ ∗ ∗ − ∗

  , where 2σ and M are defined in (14), respectively. 

Doing these N times gives a sample of replicates 1 , , .NT T∗ ∗
  Let (1) ( ), , NT T∗ ∗

 be the order statistics, 

the critical values for ˆ( )T ε can be estimated from (1) ( ), , NT T∗ ∗
 . 

Conclusions 
Elliptical distribution plays an important role in generalized multivariate analysis. When the 

distribution of the errors , 1, ,j j nε =   in (1) enjoys elliptical symmetry, the direction vectors 
(m)
iξ in (18) should be, approximately, uniformly distributed on the surface of the unit sphere mΩ . 

Based on the generalized inverse of the covariance matrix 2Mσ of (m)G in Lemma6, ˆ( )T ε in (20) is 
constructed which possesses symmetry. Hence, the proposed test statistic ˆ( )T ε will have good power 
for testing goodness of fit to the elliptical distribution of errors in the multivariate linear model. 
The multivariate times series tζ follows a vector autoregressive(VAR) model, if 

0
1

p

t i t i t
i

aζ φ φζ −
=

= + +∑ , 

where ta is a sequence of i.i.d. random vectors with mean zero and covariance matrix aΣ . The 
goodness-of-fit test for the elliptical distribution of the errors tε in the multivariate linear regression 
model can be extended to testing the elliptical distribution of the innovations ta in the VAR model. 

Appendix 
Proof of Lemma2(b). By (a), we have 

                  ' ' ' 1 '1 1ˆ ˆ ˆ= ( ( ) )
- - nI X X X X

n p n p
ε ε ε ε−Σ = −  

                     
1

' ' ' '1 1 1 1
-
n X X X X

n p n n n n
ε ε ε ε

−     = −     
      

.                      (22) 

By Lemma1 and the law of large numbers,  
2

'1 ( ) = =( ) ,
p

m ij m m
E n

n m
κε ε σ ×→ ⋅Σ Σ →∞ .                          (23) 

Let (1) ( )( , , )pX X X=  , (1) ( )( , , )mε ε ε=  and ' ( )ij p mX ε λ ×= . Then 
'
( ) ( ) , 1, , , 1, , .ij i jX i p j mλ ε= = =   

By Chebyshev’s inequality for any 0∆ > ,  

                 
'
( ) ( )1 '

( ) ( )2 2 2

1( ) ( ) i i jj
ij i j

X X
P n Cov X

n n n
σ

λ ε− > ∆ ≤ = ⋅
∆ ∆

,                   (24) 

where 0jjσ > is defined in (23). By (9), we have  

1 1 '0, 0
p p

ijn n X nλ ε− −→ ⋅ → →∞， ,                           (25) 

By (23) and (25), ˆ , .
p

nΣ→Σ →∞  
Proof of Theorem1. By (9) and Lemma2(a), 

                               ' ' ' 'ˆˆ ,
p

i i i iy x nε β ε= − → →∞ .                              (26) 

Thus, the asymptotic distribution of îε is (0, )m mEC Σ , i.e., ˆ ~ (0, ),
a

i m mECε Σ 1,2, , .i n=   
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By Lemma1 and (16), we have 2= mαΣ Σ . By Lemma2(b), 

                           ˆ( ) ( ) ( ),
P

mL L L nαΣ → Σ = Σ →∞ ,                             (27) 
Thus,  

                     1 1ˆ ˆ[ ( )] [ ( )] ,
P

i i i m iz L z L nε α ε− −= Σ → = Σ →∞ ,                      (28) 
where iε is defined in (5). Since ~ (0, )i m mEε Σ , by (27) - (28) and Lemma3, we have 

   2~ (0, )i m mz EC Iα −
 , 2~ (0, )

a

i m mz EC Iα − ,                      (29) 
Thus, the desired results of (a) and (b) are proved. Since iz in (29) has a spherical distribution, we 

have by Lemma5 

                         (m) / ~ ( ),
d

i i i mz z U nξ → Ω →∞  . 
The desired result of (c) is obtained. 
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