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Abstract. Active contours, or snakes, have extensive applications in image segmentation. 
Conventional snakes have several drawbacks, such as the initialization contour sensitivity and border 
leakage phenomenon. Many new methods have been proposed to address these problems. In this 
paper, we present an improved image segmentation method based on snakes. Firstly, we adopt the 
multi-step direction method to enlarge the scope of initial contour and obtain more precise edge map. 
Then, we decompose the Laplace operator to tangential direction and normal direction, weakening 
the border smoothing effect. Finally, two correlational self-adaptive weight functions are added to the 
two directions. Thus, the snakes can adaptively adjust the weights of smoothing item and diffusion 
item through the local image characteristics. Based on the subjective and objective evaluations, the 
proposed method outperforms the state-of-the-art methods and improves the segmentation accuracy. 

Introduction 
Active contour model, or snake model, was proposed by Kass et al [1], in 1987. Snake model has 

been widely applied in the fields of computer vision and image processing [2-6], such as image 
segmentation, target tracking, and edge detection. Although the conventional active contour model 
has been widely used, it still has its shortcomings [7]. First, the initial contour must be very close to 
the interesting image features. Second, border leakage phenomenon is occurred, losing a lot of 
important image information. Third, the snake curve is difficult to reach indentation boundaries. 

In order to solve these problems, Xu proposed gradient vector flow (GVF) snake model [7], which 
is able to expand the capture scope of initial contour and has a certain indentation convergence 
capability. The generalized gradient vector flow (GGVF) model proposed by Xu and Prince [8] adds 
two weight coefficients changing in the image field based on the original GVF external force field. 
Thus, the curve converges rapidly in the flat field and has certain boundary protection effect. 
However, the indentation convergence capability has not been greatly improved. NGVF proposed by 
Ning [9] decomposes the Laplace operator in the GVF external force field, and only retains normal 
component. Thereby NGVF further improves the curve’s indentation capability. Although the 
tangential component after decomposition has been added to GVF external force field by later 
NBGVF [10], the convergence capability of long and thin indentation has not been significantly 
improved. Based on the studies about GGVF and GVF, Qin [11] discovered that no matter GGVF or 
GVF can only converge to the indentation with odd pixel width and is of no convergence capability to 
the indentation with even pixel width. Therefore, CN-GGVF algorithm was proposed by Qin, with 
applying component normalization method in GGVF. CN-GGVF solved the problem that 
deformation curve cannot converge to even pixel width, and retained the fast convergence character 
in GGVF. However, CN-GGVF has no ideal effect on the protection of weak boundary features of 
interesting field and has boundary leakage phenomenon. 
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Related Work 

Traditional Snake Model. In the active contours model first proposed in [1], an energy 
minimizing curve (snake) is guided by external and internal energies to create a contour around an 
object. It can be expressed by ( ) ( ) ( )( ) [ ], , 0,1x s x s y s s= ∈ . The energy function is as follows: 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
1 1

2 2

0 0

x x = x x xsnake int ext extE E s E s ds s s E s dss sa β   ′ ′′= + + +   ∫ ∫ .              (1) 

where ( )( )xintE s , the snake’s internal energy or prior, is the weighted sum of first and second 

derivatives of ( )x s . ( )( )xextE s  represents external energy. ( )sa  is the elastic coefficient and 

( )sβ  denotes intensity coefficient. Based on the variational principle [12], the Eq. 1 satisfies 
Euler-Lagrange equation at the maximization of contour curve energy: 

( ) ( ) ( ) ( ) ( )( ) 0x x xexts s s s E sa β′′ ′′′′− −∇ = .                                                                                (2) 

where ( )x s′′′′  represents the fourth derivative of ( )x s . Eq. 2 can be regarded as force balance 
equation: 

( )( ) ( )( ) 0x xint extF s F s+ = .                                                                                                           (3) 

where ( )( ) ( ) ( ) ( ) ( )x x xintF s s s s sa β′′ ′′′′= −  represents internal forces constraining curve 

smoothing and stretching; ( )( ) ( )( )x xext extF s E s= −∇  denotes external force, driving curve to move 
to expected feature boundaries. 

GVF Snake Model. GVF snake proposed by Xu et al. will not consider snake model from the 
perspective of energy minimization, but consider it as a force balance process. Eq. 3 is the basic 
equation for the construction of GVF snake model. External force ( )( )xextF s  is substituted by a GVF 

field ( ) ( ) ( ), , , ,x y u x y v x yu =    . The following energy function is obtained through minimize its 
components: 

( ) 22 2 2 2
x y x yE u u v v f f dxdyµ u= + + + + ∇ −∇∫∫ .                                                                           (4) 

where f  represents the edge map of processed image I ; f∇ denotes gradient field of f ; µ  
represents a parameter controlling the smoothness of GVF field. The gradient vector flow field 
satisfies the Euler equation: 
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where  x
ff
x
∂

=
∂

,  y
ff
y
∂

=
∂

. The first term is diffusion item, and 2∇  is Laplace operator. 

The Proposed Method 

Multi-step Directional Approach. In GVF snake model, boundary image is gained through the 
image gradient and external force field is achieved based on the boundary information. It is very 
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necessary to get an accurate boundary image. However, GVF snake model only retains the amplitude 
value of gradient image, losing gradient direction information. With a complicated background, 
snake curve may easily converge to false boundaries. For driving snake curve to converge more 
correctly to the desired boundary, we optimize the process of capturing a boundary image. The flow 
chart is shown in Fig. 1. The brief steps are as follows: 

Original image 
I(x, y)

Initial boundary 
image f(x, y)

Distance function 
Dweight(x, y)

2D vector field 
n(x, y)

New distance 
boundary image 
(DM) F (x, y)

Multiple cycles can be 
selected to obtain DM

 
Fig. 1 The flow chart of multi-step directional approach 

Step 1: Use (6) to obtain initial boundary image ( ),f x y : 

( ) ( ) ( )( ), G , ,f x y x y I x yσ= ∇ × .                                                                                                  (6) 

Step 2: Add gradient direction information to obtain a new DM (Distance Map), denoted by 
( ),wD x y  [13]. Consider DM as the final boundary image to apply it in the iterative process. 

Step 3: Define 2D vector field ( ),n x y  depending on DM function: 

( )
( ) ( )
( ) ( )
( ) ( )

, if  x, y  is inside the contour
, , if  x, y  is on the contour

, if  x, y  is outside the contour

       
         

     

w

w

D x y
n x y x y

D x y
ϕ

∇= ∇
−∇

.                                                             (7) 

where ( ), yxϕ  can be defined voluntarily or use a function in the known methods. We use the 

same ( ), yxϕ  with [13]. ( ),n x y  has unit amplitude and ideal directivity. 

Step 4: The new distance boundary image  can be gained by convoluting ( ),n x y  and ( ),f x y : 

( ) ( ) ( ) ( ) ( )
( ) ( )

, , , , 0, 0 , , 0
    

                             new
f x y n x y f x y n x yf x y f x y n x y

⋅ ⋅ ≥=  ⋅ <
.                                                                   (8) 

Step 5: Select multiple cycles to gain boundary image depending on the complexity of image 
background. Generally, the cycle just needs to be performed once. 

Adaptive Diffusion. Laplace operator is used as diffusion item in GVF snake model and it is 
shown below: 

2 2
2

2 2x y
∂ ∂

∇ = +
∂ ∂

.                                                                                                                              (9) 

In Eq. 5, 2u∇  and 2v∇  are diffusion items, ( )xu f−  and ( )yv f− are data items. The diffusion 
items have strong anisotropic properties, but do not have the capability in protecting boundaries. 
Nevertheless, data items can protect the boundaries. Therefore, in order to improve boundary 
protection of snake curve, we decomposes Laplace operator in the tangential and normal directions. 
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where TTL  and NNL  represent the tangential and normal second derivatives of L  respectively. So 
Eq. 5 can be rewritten as: 

( )
( )

( ) ( ( ) ( ) ) ( )
( ) ( ( ) ( ) ) ( )

TT NN x

TT NN y

u g f l f u s f u h f u f
v g f l f v s f v h f v f
 = ∇ ⋅ ∇ + ∇ − ∇ −
 = ∇ ⋅ ∇ + ∇ − ∇ −

.                                                             (11) 

where correlational self-adaptive weighting functions l f∇ and s f∇  are defined as follows: 
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Parameter R  is a positive constant. If the boundaries are weaker, the value of R  is relatively 
smaller. On the contrary, the value of R  is higher, which can be appropriately adjusted based on 
different features of image boundaries. Divergence along the tangential direction has the function to 
protect image boundaries, whereas, the diffusion along the normal direction functions to smooth 
noise and image boundaries. 

Experimental Results 
In order to verify the effect of proposed snake model, we carried out experiments on synthetic 

image and real image. We compared with the existing GVF [7], GGVF [8], NGVF [9], NBGVF [10], 
CN-GGVF [11], and analyzed experimental results in turn. All the experiments selected C++ 
language as the implementation language. Visual Studio 2008 is used as the development 
environment. CPU with Intel Core™ i7-3770, 3.40GHz and 4G memory size. 

Synthetic Image. Since Kass proposed snake model in 1987, the indentation convergence 
capability of snake curve has become an important standard to evaluate a new snake model. Although 
several current typical snake models have made many improvements, it still has large space to make 
efforts to the ability of long and thin indentation (LTI). The green curve in Fig. 2 (a) represents the 
initial contour of snake, which is generated automatically. As shown in Fig. 2, GVF, GGVF, NGVF, 
and NBGVF cannot converge to the bottom of LTI effectively. However, the proposed method can 
converge to the bottom of LTI and has better corner convergence and protection effect compared with 
CN-GGVF, further improving LTI convergence capability of snake curve. ( 0.8, 0.1a β= = , number 
of iterations is 40, 0.8R = ) 

 
 

1165



 

 
Fig. 2 Segmentation results of long and thin indentation using differnet snake models. (a) Initial contour (b) 

GVF (c) GGVF (d) NGVF (e) NBGVF (f) CN-GGVF (g) Proposed method. 

Real Image. We take live-action image “Standing” to test the algorithm, as shown in Fig. 3. In Fig. 
3 (a), the red line with green control point is the initial contour, which is given manually on the gray 
image. From Fig. 3 (b) to Fig. 3 (e), we display the segmentation results of color image. As we can see, 
the crack in the wall is the boundary in background. Snake curves in Fig. 3 (b) and Fig. 3 (d) converge 
to the crack, causing incorrect segmentation results. In Fig. 3 (c), the curve comes across the 
boundary of right hand and converges to the collar, losing foreground information. However, the 
proposed method, shown in Fig. 3 (e), has the correct segmentation results and eliminates the 
boundary leakage problem. ( 0.6, 0.1a β= = , number of iterations is 60, 0.5R = ) 

 
Fig. 3 Segmentation results of real image “Standing” using differnet snake models. (a) Initial contour (b) GGVF 

(c) NBGVF (d) CN-GGVF (e) Proposed method. 
The subjective evaluation about algorithm performance has some limitations. Precision, recall and 

F1 measure are adopted to evaluate the segmentation results objectively [14]. The ground truth is 
obtained manually by using Photoshop CS5. The comparison histogram is shown in Fig. 4. The 
detailed data are given in Table 1. Obviously, the proposed snake model has more precise 
segmentation results than GGVF, NBGVF and CN-GGVF. 
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0.95

Precision Recall F1 measure

GGVF

NBGVF

CN-GGVF

Proposed Method

 
Fig. 4 Histogram of objective evaluation on real image “Standing” using precision, recall and F1 measure. 

Table 1 Objective evaluation results on real image “Standing” using precision, recall and F1 measure. 
Criteria 

Methods Precision Recall F1 measure 

GVF 0.7765 0.8666 0.8191 
NBGVF 0.8764 0.8991 0.8876 

CN-GGVF 0.8739 0.8920 0.8829 
Proposed Method 0.9283 0.9104 0.9193 

(a) (b) (c) (d) (e) (f) (g) 

(a) (b) (c) (d) (e) 
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Summary 
Conventional snake models have several drawbacks in the field of image segmentation. In order to 

obtain more precise results, we apply multi-step directional approach and add directional information 
of vector field to acquire boundary image. In the meantime, we add tangential and normal 
correlational self-adaptive weighting functions after Laplace operator decomposition. Compared 
with other snake models, the experimental results show that the proposed snake model has better 
convergence ability and image segmentation effect. 
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