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Abstract. The correctness of the surface point position and the smoothness of the interface would 
significantly influence the final results in numerical simulations, especially in free surface cases 
such as bubble in the water, vessel with blood. However, how would the error caused by improper 
surface position and rough shape affect the result remains unknown. In fact, moving the surface 
point incorrectly would lead to a discretization error which depends on discretization schemes and 
difference methods. In this paper, the effects of the error caused by wrong displacement of one 
point are investigated in a system based on finite volume method (FVM). The influence and the 
error propagation characters of three basic arithmetic operators (first time derivative, the convection 
term, the Laplacian term) are studied in pipe flow like cases. The results shows different 
propagation properties which could guide further study of error propagation in free surface 
problems in the future. 

Introduction 
The control of the error is of great importance to guarantee the correctness of numerical 

simulations. There are a variety of errors needed to be considered in numerical simulations 
including truncation error, round-off error, dicretization error etc. Among them, the discretization 
error is generally the largest one. The analysis of discretization error is even more vital in free 
surface simulations [1, 2] such as bubble in the water, vessel with blood etc. Because cell size and 
cell shape is always changing which would lead to a varied discretization error. The accuracy of the 
final result is closely related to the quality of the mesh near the surface. The quality could be 
deteriorated either by wrong grid position caused by bad free surface adjusting algorithm or by 
rough interface caused by improper cell shape and size. 

Besides the discretization error caused by improper surface cell shape and size, the propagation 
characters of the error is also important. Sometimes an error in one cell would spread quickly and 
lead to the simulation failure finally (e.g. rough surface in extrusion simulations), while sometimes 
relative large errors in unimportant areas is also acceptable (e.g. coarse mesh near the inlet in flow 
past cylinder simulations). Thus, investigating the propagation of the error is significant to control 
the error and guarantee the success of the simulation. 

Researchers have proposed many indicators [3-5] to measure the mesh quality such as the aspect 
ratio (the ratio of cell length to cell width), skew, distortion. However, how would a low quality 
mesh or wrong surface would affect the simulation result and how would the loose of precision or 
error propagate in the mesh is still unknown according to these indicators. Two general methods are 
proposed to investigate the characters of error propagation. One is to investigate the characters of 
the matrix [6] it formed in the linearized equation. it could tell the developers whether or not the 
solution is trustable, however, it is hard to describe how the error is propagated in the mesh. The 
other one is to build up models for the propagation of the error [7]. Error propagation model directly 
depends on discretization schemes and difference methods [8]. For example, general discretization 
schemes used in continuous medium model like FEM, FVM often spread the error to all cells after 
one iteration. However, LBM [9], a new discrete medium model, would only pollute cells nearby. In 
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terms of difference method, it determines the data dependence relation and the range that the error 
would pollute. For instance, two order central difference would affect its neighbour cell while one 
order upwind difference would only influence itself. 

Though the error propagation model method could display the procedure of error propagation in 
a clear way, it is usually hard to build up proper models for real physical problems in practical, 
especially for continuous medium models. Most previous literature mainly focuses on the degree of 
accuracy, which is not easy to describe the influence intuitively. Based on error propagation model 
method, this paper investigates the propagation of error in mesh caused by surface point movement 
in FVM systems for pipe flow like case. The innovations of this paper are as follows: 

*  Analyze the factors when building up error propagation models 
* Design the error source so as to investigate the influence of the error, and build up error    

  propagation models for three commonly used arithmetic operators (first time derivative, the 
  convection term, the Laplacian term). 

* Validate the correctness of the proposed model. The results show that the propagation of the 
error is closely relies on discretization schemes and difference methods, sometimes it would be 
related to the parameters of the mesh (e.g. the aspect ratio). In addition, only spacing discretization 
terms (i.e. the convection term and the Laplacian term) would spread the error to other cells. 

The rest of this paper is organized as follows. An overview of error model and the analysis of 
factors of error propagation are given in Section 2. Detailed description of error propagation model 
for each arithmetic operators are presented in Section 3. Experiments design and the numerical 
results are reported in Section 4. Previous works about error propagation study are briefly 
introduced in Section 5. Conclusions are drawn in Section 6. 

Overview 
Error model. General speaking, when tackling with a physical problem, the continues governing 

equations should be firstly discretized by cells. Linear equations are built up after discretization, and 
then the solution could be obtained by solving these discretized equations. As a matter of fact, Both 
the improper surface shape and the wrong grid position would lead to an error when implementing 
the equation discretization, thereby changing the element in the matrix when solving the linear 
equations and subsequently altering the final results. The organization of the matrixes of linear 
equations are directly depend on the discretization schemes (e.g. FVM, FEM, FDM) and the 
difference methods (e.g. central difference, upwind difference). Different discretization schemes 
and difference methods would result in diverse matrix structure, thereby presenting various error 
propagation characters. 

Factors of error propagation. In this paper, the loose of precision because of mesh deformation 
and wrong position caused by improper surface adjusting algorithm on the surface are regarded as 
the same which is an error source on the surface. Therefore, manually movement of surface grids is 
adopted as the initial error source to investigate the interface shape influence and error propagation 
characters. 

General models built up for physical problems are continues models. In order to describe the law 
of objective motion, a great number of continues equations are proposed. However, computers 
could only address discrete issues. Thus all the physical quantities should be scattered into discrete 
mesh at first. One of the most famous equations which is widely used in liquid simulations is the 
momentum equation which could be written as 

( )u u u u c
t

ρ β∂
+ ⋅∇ − ∆ =

∂                                                               
  (1)

 
Where ρ  is the dense of the liquid, u  is the velocity, t  is the time, β  is the viscosity and 

c  is a constant force. Four terms are time derivative term, convection term , Laplacian term and 
constant term. Without loss of generality, the constant c  is considered as a positive value in this 
paper. It is a continuous equation which can only be solved after discretization. Physical quantities 
are usually stored on grids or the center of the cell, while values on the cell face are needed in the 
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calculation. Therefore interpolation is adopted to obtain these essential variables on the cell face. 
Note errors are also brought in during the interpolation procedure. On the one hand, general 
interpolation schemes give tacit consent to the view that the value of points in the cell satisfy a 
certain rule, such as linear variation. However, it is often not true in the real world. Such 
approximation could only be considered reasonable when the distance of grids is enough short. In 
other words, the truncation error caused by cell size could be limited under a specific threshold by 
increasing the dense of the mesh. On the other hand, irregular cell figure would also lead to large 
discretization error. Because the gradient of the quantity on the grid or cell center are usually the 
arithmetic average, irregular cell figure would result in a longer distance between the interpolation 
points and the original grids for some points which brings in a relative larger truncation error. Such 
errors can only be reduced by transforming these irregular cells into regular ones. The best cell 
figures are considered as regular polyhedron (e.g. regular tetrahedron, regular hexahedron). 

There are a variety of discretization schemes at present including FEM, FDM, FVM etc. Among 
them, FVM is widely used in liquid simulation because of its property of local conservation. Every 
term in the equation needs to do an integral by the cell volume V  in finite volume method, and 
according to Gauss's theorem, Most spatial derivative terms could be converted to integrals over the 
cell surface S bounding the volume. 

* *
V S

dV dSφ φ∇ =∫ ∫                                                                       
(2)

 
Where S  is the surface area vector, φ  could stand for any tensor field and the star notation * 

could represent any tensor product (i.e. inner, out and cross). It can be seen clearly from Eq. 2 that 
when the surface of the cell varies, both the size and the direction of the surface vector would 
change, and thereby influence the solution. 

Besides discretizaiton schemes, equation discretization is closely related to difference methods. 
Eq. 3 and Eq. 4 are central difference (CD) and upwind difference (UD) respectively which are 
frequently-used in numerical simulations. 

(1 )f x P x Nf ffff  = + −
       

(3) 

0
0

P
f

N

for F
for F

f
f

f
≥

=  <         

(4) 

Where ff  represents the physical quantity on the face center. P  and N  represent the owner 

cell and the neighbour cell respectively. /xf fN PN≡  where fN  is the distance between face 

center f  and cell center N , and PN  is the distance between cell centers P  and N . 

       
              Fig. 1. Pipe flow configurations         Fig. 2. One point at the surface is displaced 

It can be seen from the two formulas above that physical quantities would be affected by two 
adjacent cells with two order central difference, while would only be affected by one cell (the 
upwind cell) with one order upwind difference. Note because it is hard to realize high order 
difference method in FVM, only order and two order difference methods are discussed in this paper. 
As a matter of fact, difference former determined the range of the error propagated. 

This paper investigated the error propagation model of three basic term, the time derivative term, 
the convection term and the Laplacian term, with various difference methods based on FVM. Errors 
are introduced by manually moving the grids on the surface. For the simplicity of investigation, 
flow's behaviour in a straight pipe (see Fig. 1) is studied and only one point on the surface is 
misplaced along vertical direction (see Fig. 2). 
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Error propagation model 
Model for time derivative term. To build up models for the first time derivative, the equation 
/du dt c=  is adopted. Integrating over a control volume for each term and using Euler implicit 

scheme for the first time derivative term, the form of this equation can be written as 
( ) ( ) ( )

n o
nP P

V V

u V u VudV cdV cV
t t

−∂
= = =

∂ ∆∫ ∫
                                             

(5)
 

Where n and o represent the time step it is solving for and the previous time step respectively. 
The velocity of current time step can be then solved as 

( ) /n n o n
P Pu c t u V V= ∆ +                                                                      (6) 

The conclusion can be drawn from Eq. 6 that if the cell volume is increased, the velocity of the 
corresponding cell would decrease relatively and vice versa (Note previous velocity o

Pu  is 
considered as non-zero here). Obviously, the volume of the cell would be increased when one of the 
grid is moved upward. What is more, the velocity of cells with the same cell volumes would 
increase linearly. Specifically, When c equals to zero, the velocity would keep constant. That is to 
say, the error would not propagation along meshes due to the first time derivative term. Therefore, 
the error propagation model for the first time derivative term could be depicted as the following 

Model 1 The first time derivative term would not propagate the error spatially, and only cells 
connected to the moved grid would vary. For Euler difference method, moving the grid outwards 
would result in a decrease of velocity of cells connected to the moved point and vice versa. 

Model for the convection term. The convection term is generally used to describe the 
transportation of mass, momentum or power caused by fluid convection. A typical equation can be 
written as ( )U cα∇⋅ = , Where α  could be considered as the concentration. Integrating over a 
control volume, this convection term could be linearised as 

( ) ( ) ( )f f f fV S V
f f

u dV dS u S u F cdV cV
t

α α α α∂
∇⋅ = ⋅ = ⋅ = = =

∂ ∑ ∑∫ ∫ ∫
                       

(7) 

Where f  present quantities on the face center and F  is the flux through the cell face. 
Supposing the flow is uniform flow and is parallel to the cell (see Fig. 2), and the velocity of the 

inflow keep constant. When the grid (pint b) is moved upwards (to point b1), for the cell on the left 
(cell A), only the right face and the upper face have changed. The flux of the right face is increased 
due to the increase of the area, while the flux of the upper face does not change because its 
boundary condition is keeping the velocity zero. Therefore, the total flux is increased. In order to 
maintain the sum of the product (see Eq. 7) as a const, a decrease of the concentration is required. 
The concentration of the cell on the right (cell B) would increase through similar analysis. 
Concerning with the cells remain, besides the boundary layer (cells possessing the boundary patch) 
with displaced grid point, all the other cells would be unaffected as there is no change of their flux. 
For the boundary cells after cell B, because the contribution of the left face is negative and the 
magnitude of it has been increased, the concentration of their own cell should be increased 
accordingly. While for the boundary cells before cell A, things become interesting. If central 
difference method is used as Eq. 3, these cells would vary between increased and decreased 
alternately. This phenomena is due to the flux of the face is affected by two adjacent cells and the 
velocity at the inlet would never change. Therefore, cells located in the front pipe should vary in 
this way so as to satisfy the convection equation. While when upwind difference method is used as 
Eq. 4, face values would only be affected by their upwind cells, which means face flux of cells 
before cell A does not change in the simulation, thus the concentration is also invariant. Similar 
analysis could be done for the condition that the surface grid is moved downwards. To summarize 
the preceding analysis, error propagation model for the convection term could be given as 

Model 2 The convection term would propagate the error spatially. However, in uniform pipe 
flow with a constant inlet velocity, only cells in the varied boundary layer may changed. Moving the 
grid outwards would result in a decrease of concentration of its left cell and an increase of its right 
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cell. The concentration of downstream boundary layer cells would also increase while the change 
rule of the upstream boundary layer cells is related to the difference method. 

Model for the Laplacian term. Different from the convection term, the Laplacian term is used 
to describe the transportation of mass, momentum or power due to random motion of molecules. 
Laplace operator is widely used in constructing Poisson equation which can be written as 

( )u c−∇⋅ ∇ = . In particular, when the constant c equals to zero, the equation is called Laplacian 
equation. The final discrete form of the Laplacian term is given by 

( ) ( ) ( )f fV S
f

u dV dS u S u
t
∂

∇ ⋅ ∇ = ⋅ ∇ = ⋅ ∇
∂ ∑∫ ∫

                                               
(8) 

If the length vector d between the owner cell center P and the neighbouring cell center N is 
orthogonal to the face plane, i.e. parallel to fS , the face gradient discretization can be calculated as 

( ) N P
f f f

u uS u S
d
−

⋅ ∇ =
                                                                   

(9) 

Supposing the steady state of the flow in the pipe is a parabolic curve. Then each cell satisfies 
upN P downN P

up down
upNP downNP

u u u us s cV
d d
− −

− − =
                                                      

(10) 

Where up and down represent the value of upper cell or face and lower cell or face respectively. 
When the surface gird is moved with a short distance, the velocity variety along x direction (the 
flow direction) is small which can be neglected. Therefore, Eq. 10 is still considered as the 
controlling equation. Supposing the mesh is uniform mesh, and if the point is then moved outwards 
slightly, with the approximation for cells connected to the moved point as 2downNP upNPd d= , 

up downS S=  and 2 upNP up downNP downV d S d S= = , from Eq. 10, it can be obtained that the velocity of 

cells connected to the moved point is 2(2 2 ) / 3P upNP downN upNu cd u u= + + . Moving the point 
outwards slightly would increase upNPd  (See Appendix) which would result in an increase of 
current cell velocity Pu . 

However, if the point (point B) is moved outwards with a long distance, the area of the upper 
face would far larger than other faces. Then Eq. 10 of cell A can be considered as 

n
f P n n

upn
upNP

u u
s cV

d
−

− =
                                                                       

(11)
 

Where fu  is the velocity of the wall boundary patch which always equals to zero. The original 
state of cell A is 

0 0o
f P o o odownN P

up downo o
upNP downNP

u u u us s cV
d d
− −

− − =
                                                      

(12) 

Supposing the length and the width of the cell are L and h respectively. Then for 2D model, it has 
*ocV L h= , o

upS L= , / 2o
upNPd h= . Because o o

downN Pu u> , from Eq. 12, it has 22o
Pu ch> . For a 

long distance movement y∆ , the volume nV  and the upper cell face area n
upS  can be 

approximated as 1/ 2 yL∆  and y∆  respectively. Then the current velocity can be solved as 
1/ 2n n

P upNPu cd L=  according to Eq. 11. If 21/ 2 2n
upNPcd L ch< , then it has o n

P Pu u> , i.e. the velocity is 

decreased for cell A and B. If o n
P Pu u<  is required, it at least requires 21/ 2 2n

upNPcd L ch> . Because 

min( / 2, / 2)n
upNPd h L>  (see Appendix), for a conservative estimation, it requires 

21/ 2 ( / 2) 2c h L ch>  and 21/ 2 ( / 2) 2c L L ch> . Then it has 8L h> . 
In laminar flow, the flow is actually matching 2 2( / )u y c− ∂ ∂ = . Supposing the boundary 
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condition is (0) 0u =  and (1) 0u = , then the theory resolution of this equation is 
21 1

2 2
u cy cy= − + . Moving the point outwards is equivalent to changing the boundary condition as 

( ) 0u b = , where 1b > . Therefore, for other cells with the same position 0y , it has 

2 2
0 0 0 0 0

1 1 1 1( )
2 2 2 2

u y cy cby cy cy= − + > − + . i.e. Besides the cell connected to the moved point, all 

other cells velocity would always increase when the point is moved outwards. 
Through similar analysis, the conclusion could be drawn that when the point is moved inwards, 

the velocity would decrease. However, because the distance of the movement is limited (can not 
access the lower point), the velocity would never increase no matter how long it is moved. 

In summary, the error propagation model for Laplacian term could be described as 
Model 3 The Laplacian term would propagate the error along each direction. Moving the grid 

downwards would result in a decrease of velocity. If the grid is moved outwards with a long distant 
and the aspect ratio is not large (e.g. small than 4), the velocity of cells connected to the moved 
points would decrease while other cells velocity would increase. Otherwise, all the cells velocity 
would increase. 

Experiment 
Methodology. In order to the investigate the influence of one cell error caused by rough mesh 

shape or wrong point position, manually movement of surface grids is adopted as the initial error 
source. For the sake of laying the foundation for future research about vessel with blood, the flow is 
running in a simple vessel like model, i.e. a straight pipe (see Fig. 1) with wall boundary condition 
at both sides. The middle point (x=4) at the upper wall is moved up and down along the vertical 
direction (see Fig. 2) so as to study its influence to all directions and get rid of the influent of other 
boundaries (e.g. inlet, outlet). More detailed initial conditions of the flow would be described in 
each subsection below. A steady state with the original mesh is obtained at time 1 as the correct 
solution. Then the middle point is moved and the reference data is obtained at time 10. Without loss 
of generality, the constant c is taken as 1 in the following experiments. Without specification, the 
mesh size is 160*20 and the displacement of the movement is 0.02 cell size. All the experiments are 
implemented in an open source FVM-based CFD simulation tool OpenFOAM [11]. 

Error propagation analysis of the first time derivative term. The uniform flow begins from 1 
m/s and would speed up gradually. If no change happened, all cells velocity would accelerate at a 
same rate. Once one point is moved, the velocity in the pipe is shown in Fig. 3. Here red and blue 
represent high velocity and low velocity respectively. It can be seen clearly that only cells 
connected to the moved point is different from others, and moving outwards would slow down the 
velocity while moving inwards would speed up the velocity which perfectly match Model 1 
described in Section 3.1. 

 
        (a) The point is moved inwards               (b) The point is moved outwards 

Fig. 3. Simulation results of velocity in the pipe after the middle point is moved 
Error propagation analysis of the convection term. The uniform flow with 1 m/s constant 

speed is used in this section to convect materials. α  at the inlet is keeping fixed (the concentration 
is set as 1) as a constant source. From Model 2 depicted in Section 3.2, only cells in the varied 
boundary layer may have a changed concentration, and the varying pattern is depends on difference 

method. Therefore, the error of the concentration αε  in the most upper cell layer with point moved 
inwards with central difference method, point moved outwards with central difference method and 
point moved outwards with upwind difference method are calculated and illustrated in Fig. 4. The 
simulation results show that the error of the concentration in the front area of the pipe would 
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oscillate around the correct value with the same amplitude with central difference method. While 
there would be no error in the front area when using upwind difference method. Errors of the 
concentration in the back area are the same, and they are relatively small no matter how violent it 
fluctuated in the upstream. 

 
Fig. 4. Errors of the concentration in the most upper cell layer 

Error propagation analysis of the Laplacian term. The flow is tend to form a parabolic curve 
with Laplacian term. From Model 3 demonstrated in Section 3.3, it can be known that the error 
would propagate to each direction. Therefore, Errors of the velocity uε  in the boundary layer with 
moved points, the layer next to the boundary layer, the vertical layer beside the moved point (two 
layers are the same, thus taking the left layer as an example) are extracted and shown in Fig. 5. 
These figures illustrate that the error would propagate along each directions indeed, and the longer 
distance the displacement is, the more dramatic it changes and thereby, the larger range it influences. 
Generally the velocity would increase as the point moved outwards and decrease as the point moved 
inwards as shown in Fig. 5 (b). Exceptions may occur when the point is moved outwards largely, 
the velocity of cells connected to the moved point may reduced as shown in Fig. 5 (a). Model 3 
have demonstrates that it could be due to the mesh aspect ratio (the ratio is 1 in general cases). 
Simulation results with different aspect ratio are shown in Fig. 6. Here, the point is moved outwards 
with 5 times original cell size (i.e. moved from position (0 1 0) to position (0 1.25 0)). Meshes size 
for the comparative cases are 1600*20 and 16*20 which means the aspect ratio is 0.1 and 10 
respectively. It can be seen clearly that only when the aspect ratio is not large would a long distance 
outwards movement lead to a distinguishing change, which validates the correctness of Model 3. 

   
(a) The error of the boundary layer        (b) The error of the layer next to the boundary layer 

 
 (c) The error of vertical layer beside the moved point 

Fig. 5. Errors of the velocity with different direction and amplitude in various cell layers 
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Fig. 6. Errors of the velocity with different aspect ratio 

Related work 
To investigate the characteristics of the error propagation, there are two frequently-used methods. 

One is matrix-based method [5, 6] and the other is model-based method. Matrix-based method 
investigate the effects of error from the perspective of numerical analysis. The influence of the error 
is transformed into the invetigation of the solution of the linear equation Ax b= . The discretization 
error would result in an slight error in A and b. And the deviation of the solution would heavily 
relay on the properties of the matrix. This method is universal and could obtain an accurate 
prediction of the error limit of the final solution. However, it could neither present the influence 
when the shape and the size of the cell have been changed, nor describe the characters of error 
propagation. Therefore, it could not give any suggestions to the control of error propagation. 
Model-based method builds up models for the propagation of errors. For example, in simulations 
with LBM, an error would only pollute cells around it in one time step according to the basic theory 
of particle collision. This character has been used for fault tolerance by Ren to design low-overhead 
soft error detection [7]. Therefore, model-based method could directly shed light on the law of error 
propagation in grids and guide the regeneration of the mesh so as to control the error. The limitation 
is that it might be hard to find out the potential propagation model for some cases, sometimes there 
might be no models for these models. 

Conclusion 
In this paper, the characters of error propagation in the mesh are investigated. In detail, three 

basic arithmetic operators (first time derivative, the convection term, the Laplacian term) are 
studied and different error propagation models are build up to describe them. The analysis and the 
experiment shows that the propagation of the error is closely relies on discretization schemes and 
difference methods, sometimes it would be related to the parameters of the mesh (e.g. the aspect 
ratio). In addition, only spacing discretization terms (i.e. the convection term and the Laplacian term) 
would spread the error to other cells. 

However, The real physical problems are much more complex which combined a great number 
of arithmetic operators. What is more, the boundary condition might be more complex in some 
cases, and the number of displaced points may greater than one which would construct a much more 
complicated geometric surface shape. In the future, a real problem could be investigated so as to be 
more practical to guide the control of error propagation. 
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Appendix 
Supposing the surface grid is moved outwards from point b to b1 (see Fig. 2) and forming an angle 

1b ab θ∠ = . Then the new distance between the new cell center and the new face center is 
2 2tand ( )cos cos sin sin( )

2 2 2 2 2
n
upNP

h L h L h Lθ θ θ θ θ ϕ+
= + = + = + . Where 2 2arcsin(h/ )h Lϕ = + . 

Because (0 ,90 )θ ∈ ° ° , it has 2 2min(h/ 2,L/ 2) d / 2n
upNP h L< ≤ +  
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