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Abstract. This paper is concerned with the stability analysis for impulsive stochastic high-order 
Hopfield-type neural network with time-varying delay. Utilizing the Lyapunov-Krasovskii 
Functional, some new conditions for ensuring asymptotically stability of the neural network are 
devised. Numerical examples show that the results are effectiveness. 

Introduction 
In the past two decades, Hopfield neural network (HNN) has been extensively studied, and 
successfully applied in many areas such as associate memory, pattern recognition and combinatorial 
optimization in [1-3]. In particular, stability analysis problem is one of the main properties of 
Hopfield neural network, which is a crucial feature in the design of neural network. The existing 
results for the above researches with time-delay can be classified into two categories: 
delay-independent stability and delay-dependent stability. 

As is well known now, the stability analysis issues of neural networks in the presence of stochastic 
perturbations have stirred the research attention. Motivated by these, in this paper we address the 
problem of delay-dependent stability for high-order impulsive Hopfield neural networks with 
time-varying delay in the presence of stochastic perturbations. By using a new Lyapunov-Krasovskii 
functional and Linear Matrix Inequality (LMI), several delay-dependent conditions are presented 
such that the neural network is asymptotically stable. 

The rest of this paper is organized as follows: in section 2, we give formulation and preliminaries 
for an impulsive high-order Hopfield neural network with time-varying delays; in section 3, some 
sufficient conditions are presented for the asymptotical stability of the system; in section 4, we give 
the conclusions. 

Problem formulation 
Consider the impulsive high-order Hopfield-type neural networks with time-varying delays described 
by 
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Where, ( ) 0iR t >  and ( ) 0iI t >  are the capacitance, the resistance, and the external input of the i th 

neuron, respectively. ( ) 0ijT t > , ( ) 0ijW t > and 1( ) 0ijT t > , 1( ) 0ijW t > are the first- and second-order 
synaptic weights of the neural networks, respectively. 0ijt >  is the time delays, and satisfy 
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The lector * * *
1[ , , ]nx x x=  is the equilibrium point of system (1), if it is satisfies the following 
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and suppose that some conditions are satisfied so that the equilibrium point of (1) does exist. Let 
*( ) ( ) , 1, 2, ,i i iy t x t x i n= − =   and *( ( ( )) ( ( ( )) ( )i i i i i i i if y t t g x t t g xt t− = − − . Then, for each 

1, , ,i n=   | ( ) | ( ),    ( ) 0,    i i if x K x xf x x R≤ ≥ ∀ ∈                                                                               (4) 
System (1) may be rewritten as follows 
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Where lζ  is between ( ( ( )))l l lg x t tt−  and *( )l lg x  . 
As discussed in Section 1, in the real world, the neural network is often disturbed by 

environmental noises that affect the stability of the equilibrium point. In this paper, the model (5) is 
generalized as follows in order to account for the stochastic perturbations: 
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The stochastic disturbance 1( ) ( ( ), , ( ))T n

nt t t Rω ω ω= ∈  is a Brownian motion defined on a 
complete probability space ( ), , PΩ Ψ  with a natural filtration 0{ }t t≥Ψ  generated by { (s) : 0 s t}ω ≤ ≤  , 
where we associate Ω  with the canonical space generated by ( )tω  , and denote Ψ the associated by 
{ (t)}ω  with the probability measure P. Assume that ρ : n n nR R R R+ × × →  is locally Lipschitz 
continuous and satisfies the linear growth condition. 
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Then, we have 
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The following lemmas are useful in the proof of our results. 
Lemma 1 (Schur complement) The following LMI  
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We are now in a position to introduce the notion of asymptotically stability for the impulsive 

stochastic neural networks (6) with time-delays. 
Definition 1. System (6) is said to be asymptotically stable in mean square if for any given 

condition such that  2lim || ( ) || 0
t

E y t
→∞

=  , where {.}E  is the mathematical expectation. 

Stability analysis 

In this section, new criteria are presented for the asymptotical stability of the equilibrium point of the 
impulsive stochastic neural networks (6) utilizing the Lyapunov-Krasovskii functional, and its results 
can be readily checked by using the Matlab LMI toolbox. 

Theorem 1. The system (6) is asymptotically stable if there exist constants matrix 
n nP R ×∈ , 0TP P= >  , n nQ R ×∈ , 0TQ Q= > , 1 2{ , , } 0nL diag l l l= >  and constants 0, 0ε ρ> >  , 

such that P Iρ≤  , 
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1 1
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34 ( )T TT T C Qt −∆ = + ∑  and * denotes the symmetric terms in a symmetric matrix. 

Proof. Choose the following Lyapunov-Krasovskii functional 
. .
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= + − +∫  where 0TP P= >  and 0TQ Q= >  are 

to be determined. Furthermore, there exists positive diagonal matrix 1( , , )nK diag K K=   such that 
the following inequality holds based on (4), 

 ( ( )) ( ( ( ))) ( ( ( ))) ( ( ))) 0T Ty t t LKf y t t f y t t Kf t tt t t t− − − − − ≥ , 
The weak infinitesimal operator   of the stochastic process {y y(t s), s 0}t t= + − ≤ ≤  is given. For 

( 1, 2, , )kt t k≠ =   calculating the derivat 2 ( ( ( )) ( ( ( ))Tf y t t Lf y t tt t− − −  ives of V(t) along the 
trajectories of system (6) yields. 
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Taking the mathematical expectation of both sides of (9), we obtain  
2
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( ) ( ( ) ( )) ( ) | ( ) |TdEV t E y t y t E y t
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It means that the impulsive neural networks is asymptotically stable except possibly at the 

impulsive points ( 1, 2 , )kt k =   .To ensure the asymptotic stability, for kt t=  , the following 
condition is required to be satisfied: 

( ) ( ) ( ) ( ) ( ) ( ) e ( ) ( )[(I D) ( )] ( ) 0, 1,2,t T
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This means that  
( ) ( ) 0TI D P I D P+ + − <  . 
From Lemma 1, we see that the inequality (10) is equivalent to that of (7). This completes the 

proof. 

Conclusions 
In this paper, we considered the delay-dependent stability criteria of impulsive stochastic Hopfield 
neural networks with time-varying delays. We use Lyapunov-Krasovskii Functional method and 
Linear Matrix Inequality (LMI) to deal with this problem. Some sufficient conditions are derived to 
ensure the asymptotical stability for the neural networks. Finally, numerical examples have 
demonstrated the effectiveness of the proposed results. 
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