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Abstract. Frame theory plays an important role in field of the engineering and technology because of 
their redundancy properties. In this paper, symmetric fusion wavelet frames with several generators 
are constructed from any fusion wavelet frames given, which generalizes the existing result to the 
case of several generators in higher dimension.  

Introduction 
The notion of frames was first found by Duffin and Schaeffer [1] when they researched about 

general Fourier series. Since paper of Daubechies, Grossmann, and Meyer [2] was published, the 
frame theory  began to be widely used by all over the world. At first, frames have been used in signal 
processing and image processing [3]. Then, frames are used to shorten the effect of losses in 
communication systems and to improve the robustness of data transmission [4]. Also they could be 
used to design high-rate constellation in multiple-antenna code[5]. 

Wavelet frame is an important case of frame. Wavelet system is obtained by shifting and dilating 
some functions. In the 1980s, wavelets were introduced and developed by people. From then on, 
wavelets had obtained huge success in many promising asides. 

Gabor frame is another important example about frame. Gabor systems were first by coined by 
Gabor in 1946[6]. They are generated by modulations and translations of some fixed functions. 

In paper [7], authors introduced wave packet systems by fusing three operators of dilations, 
modulations and translations to the Gaussian function when they studying some singular integral 
operators. In paper [8], authors adopted the same expression to classfy any collections of functions 
which are obtained by applying the same operations.  In this paper, we name wave packet systems as 
fusion wavelet systems for the sake of the simplicity. That is, let fixed functions 

1 2 2 2( , , , ) ( )Mg g g L R⊂ , A be invertible matix and define the fusion wavelet system as the 
following 
   2( , , , , ) { : , , , 1,2, },j m

A l kG g j l k m D E T g j Z l k Z m M= ∈ ∈ =                                                         (1.1)                                                 

where ( ) det ( ),AD f x A f Ax= ( ) ( )kT f x f x k= −  and 2( ) ( )lx
lE f x e f xπ= . In fact, Gabor systems 

and wavelet systems are special cases of fusion wavelet systems. Fusion wavelet systems have been 
used to some problems in harmonic analysis and operator theory [9, 10]. 

In paper [11], authors classified fusion wavelet systems by the theory of generalized shift invariant 
systems and gave a sufficient condition of fusion wavelet system to be a frame. In paper [12], authors 
presented more examples with better properties of fusion wavelet frames. 

It is well known that the symmetry of wavelet plays an important role in applications. In [14], 
authors gave a good way to construct symmetric wavelet frames from any wavelet frames given. 
Motivated the paper [13], we will discuss the case of fusion wavelet systems in this paper. Of course, 
our way combines with some ways in wavelet analysis and Gabor analysis.  

In this paper, symmetric fusion wavelet frames with several generators are constructed in higher 
dimension from any fusion wavelet frames given, which generalizes the existing result in [14] to the 
case of  several generators in higher dimension. This way improves largely the amount of wavelet 
family. 
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Preliminaries    
Throughout this paper, the following notations will be used. R and Z  denote the set of real 

numbers and the set of integers, respectively. 2 2( )L R  is the space of all square-integrable functions, 
and ,< ⋅  ⋅ >  and  ·  ‖‖ denote the inner product and norm in 2 2( )L R , respectively, and 2 ( )l Z  denotes 
the space of all square summable sequences. 

Let us recall the definition of frame. 
Definition 2.1 Let H  be a separable Hilbert space. A sequence { }i i Nf ∈  of elements of H  is a 

frame for H  if there exist constants 0 C D< ≤ < ∞  such that for all f H∈ ,we have 

    
22 2, .i

i N
C f f f D f

∈

≤ ≤∑                                                                                                   (2.1) 

The numbers ,C D  are called lower and upper frame bounds, respectively (the largest C and the 
smallest D for which (2.1) holds are the optimal frame bounds). Those sequences which satisfy only 
the upper inequality in (2.1) are called Bessel sequences. 

Let fT denote the synthesis operator of { }i i Nf f ∈= , i.e., ( )f i i
i

T c c f= ∑  for each sequence of 

scalars ( )i i Nc c ∈= . Then the frame operator *( )f fSh T T h=  associated with { }i i Nf ∈  is a bounded, 
invertible, and positive operator mapping  of H  on itself. This provides the reconstruction formula 

1 1
, , , .  i i i i

i i
h h g f h f g h H

∞ ∞

= =

= < > = < > ∀ ∈∑ ∑                                                                                    (2.2) 

where 1
i ig S f−= . The family { }i i Ng ∈  is also a frame for H and is called the canonical dual frame 

of { }i i Nf ∈ . If { }i i Ng ∈  is any sequence in H  which satisfies 

1 1
, , , ,   i i i i

i i
h h g f h f g h H

∞ ∞

= =

= < > = < > ∀ ∈∑ ∑                                                                                 (2.3) 

it is called an alternate dual frame of { }i i Nf ∈ . 
Then, we will give the definitions of a fusion wavelet frame and the frame wavelet fusion 

functions.. 
Definition 2.2 We say that the fusion wavelet system defined by (1.1) is a fusion wavelet frame if 

it is a frame for 2 2( )L R . Then, the vector functions 1 2( , , , )Mg g g  is called the frame fusion wavelet 
functions. 

Symmetric Fusion Wavelet Frames  
In this section, we will construct symmetric fusion wavelet frames with several generators in 

higher dimension from any existing fusion wavelet frames. 
For fixed function family 1 2 2 2( , , , ) ( )Mg g g L R⊂ , define new symmetric or antisymmetric 

functions about origin  as the following: 

1 2
( ) ( ) ( ) ( )( ) , ( ) .

2 2

m m m m
m lg x g x g x g xg x g x+ − − −

= =                                                                    (3.1) 

Thus, we have 
 
Theorem 3.1  Suppose that fusion wavelet system 

2( , , , , ) { : , , , 1,2, },j m
A l kG g j l k m D E T g j Z l k Z m M= ∈ ∈ =   

defined by (1.1) is a frame for 2 2( )L R  with frame bounds 1 2,C C , then fusion wavelet system 
2

21{ : , , , 1,2, }m mj j
A l k A l kD E T g D E T g j Z k l Z m M∈ ∈ =                                                        (3.2) 
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is a symmetric frame for 2 2( )L R  about origin with frame bounds 1 2,C C , where the functions 

1 2( ), ( )m mg x g x  are defined by (3.1). 
 
Proof.  Because fusion wavelet system 

2( , , , , ) { : , , , 1,2, },j m
A l kG g j l k m D E T g j Z l k Z m M= ∈ ∈ =   

is a frame with frame bounds 1 2,C C , then, we have 

2 2

2 2 2
1 2

1
, | .

M
j m

A l k
m j Z l Z k Z

C f f D E T g C f
= ∈ ∈ ∈

≤ 〈 〉 ≤∑ ∑ ∑ ∑‖‖ ‖‖                                                                 (3.3) 

In the following we will calculate the series 

2 2 2 2

2 2
1 2

1 1
, | , |

M M
j m j m

A l k A l k
m j Z m j Zl Z k Z l Z k Z

f D E T g f D E T g
= ∈ = ∈∈ ∈ ∈ ∈

+〈 〉 〈 〉∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ .                                  (3.4)    

From property of inner product, we can deduce 
2 2

1
( ) ( )| ( ), | | ( ), ( ), |

2 2

m m
j j j

A l k A l k A l k
m g gf D E T g f D E T f D E T⋅ −⋅

〈 ⋅ 〉 = 〈 ⋅ 〉 + 〈 ⋅ 〉 .                                     (3.5)   

For any complex numbers 1 2,z z , it is well known that the following equality holds 
2 2 2

1 2 1 2 1 2 1 2| | | | | | .z z z z z z z z+ = + + +                                                                                               (3.6) 
From (3.5) and (3.6), we have 

2 2 2
1

1 1( ), ( ) | | ( ), ( ) | | ( ), ( ) |
4 4

j j m j m
A l k A l A k

m
k lf D E T g f D E T g f D E T g〈 ⋅ ⋅ 〉 = 〈 ⋅ ⋅ 〉 + 〈 ⋅ −⋅ 〉  

1 ( ), ( ) ( ), ( )
4

j m j m
A l k A l kf D E T g f D E T g+ 〈 ⋅ ⋅ 〉〈 ⋅ −⋅ 〉                                        (3.7) 

1 ( ), ( ) ( ), ( ) .
4

j m j m
A l k A l kf D E T g f D E T g+ 〈 ⋅ ⋅ 〉〈 ⋅ −⋅ 〉  

In the similar way, we can prove 
2 2 2

2
1 1( ), ( ) | | ( ), ( ) | | ( ), ( ) |
4 4

j j m j m
A l k A l A k

m
k lf D E T g f D E T g f D E T g〈 ⋅ ⋅ 〉 = 〈 ⋅ ⋅ 〉 + 〈 ⋅ −⋅ 〉  

1 ( ), ( ) ( ), ( )
4

j m j m
A l k A l kf D E T g f D E T g− 〈 ⋅ ⋅ 〉〈 ⋅ −⋅ 〉                                  (3.8) 

1 ( ), ( ) ( ), ( ) .
4

j m j m
A l k A l kf D E T g f D E T g− 〈 ⋅ ⋅ 〉〈 ⋅ −⋅ 〉  

Comparing with (3.7) and (3.8), we get 

                 
2 2 2 2

2 2
1 2

1 1
, | , |

M M
j m j m

A l k A l k
m j Z m j Zl Z k Z l Z k Z

f D E T g f D E T g
= ∈ = ∈∈ ∈ ∈ ∈

+〈 〉 〈 〉∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑                       (3.9) 

2 2

2

1

1 | ( ), ( ) |
2

M
j m

A l k
m j Z l Z k Z

f D E T g
= ∈ ∈ ∈

= 〈 ⋅ ⋅ 〉∑ ∑ ∑ ∑                                                                                   

2 2

2

1

1 | ( ), ( ) |
2

M
j m

A l k
m j Z l Z k Z

f D E T g
= ∈ ∈ ∈

〈 ⋅ 〉+ −⋅∑ ∑ ∑ ∑ . 

By simple calculation, we get 

2 2 2 2

2 2

1 1
| ( ), ( ) | | ( ), ( ) | .

M M
j m j m

A l k A l k
m j Z m j Zk Z l Z k Zl Z

f D E T g f D E T g
= ∈ = ∈∈ ∈ ∈∈

〈 ⋅ −⋅ 〉 = 〈 −⋅ ⋅ 〉∑ ∑ ∑∑ ∑ ∑ ∑ ∑        (3.10) 

According to (3.3), we obtain 

2 2

2 2 2
1 2

1
( ) ( ), | ( ) ,

M
j m

A l k
m j Z l Z k Z

C f f D E T g C f
= ∈ ∈ ∈

−⋅ ≤ 〈 −⋅ 〉 ≤ −⋅∑ ∑ ∑ ∑‖ ‖ ‖ ‖                                             (3.11) 

From (3.10), (3.11) and the equality 2 2( ) ( ) ,f f−⋅ = ⋅‖ ‖ ‖ ‖ we deduce 
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2 2

2 2 2
1 2

1
, ( ) | .

M
j m

A l k
m j Z l Z k Z

C f f D E T g C f
= ∈ ∈ ∈

≤ 〈 −⋅ 〉 ≤∑ ∑ ∑ ∑‖‖ ‖‖                                                           (3.12) 

At last, comparing with (3.3), (3.9) and (3.12), we obtain 

2 2 2 2

2 2 2 2
1 1 2

1
2

1
, | , | .

M M
j m j m

A l k A l k
m j Z m j Zl Z k Z l Z k Z

C f f D E T g f D E T g C f
= ∈ = ∈∈ ∈ ∈ ∈

+≤ 〈 〉 〈 〉 ≤∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑‖‖ ‖‖ (3.13) 

As a conclusion, we have obtained Theorem 3.1. 

Summary 
Wavelet analysis has obtained huge achievement in signal processing, denoising, sampling 

theorem, applied mathematics and other fields. In this paper, symmetric fusion wavelet frames with 
several generators in higher dimension are constructed from any existing fusion wavelet frames, 
which generalizes the existing result to the case of  several generators and higher dimensions. This 
way improves the amount of wavelets largely. 
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