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Abstract-The cerebellum has long been thought to play a 
crucial role in the forming of graceful movements, and it is 
viewed as a set of modules, each of which can be added to a 
control system to improve smooth coordinated movement, with 
improvements continuing and improving over time. The 
present paper proposes a new feedback error learning scheme 
for tracing in motor control system. In the scheme, the model 
of cerebellar cortex is regarded as the feedforward controller. 
Specifically, a neural network and an estimator are adopted in 
the cerebellar cortex model which can predict the future state 
and eliminate faults caused by time delay. The limits of 
achievable temporal accuracy in feedback-error learning are 
investigated experimentally and it is shown that motor output 
can have better temporal resolution than the error signal 
which is used for adapting the predictive controller. Finally, 
the algorithm is demonstrated in a simple but demanding 
simulated robot-control task. 
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I.  INTRODUCTION 

We still have plenty to learn from the brain. We would 
like to understand the underlying “algorithms” and 
computational principles and implement them in our artifacts. 
Not all details will be relevant but it can be expected that 
some general principles will turn out to be applicable, just as 
wings turned out to be a useful feature in airplanes but 
flapping was neither compatible with our technology nor 
necessary for flying. 

Muscles are the major output of the brain (in addition to 
some hormonal regulation) and it is therefore fair to say that 
the brain has evolved to control movement. In order to 
understand the brain at a system level, it is therefore useful 
to consider the problems encountered when controlling a 
body and interacting with the environment. 

 This paper will focus on anticipatory motor control 
implemented by the cerebellar system. It is one of the best 
understood parts of the brain both in terms of 
neurophysiology and computational principles. However, it 
seems that while this knowledge exists, it is not widespread 
because much of neuroscience research is focusing on 
neocortex in general and sensory processing in particular. 
Largely this is because it is easier to make well-controlled 
experimental setups but also because cortex is responsible 
for higher cognitive functions like planning, reasoning, 
attention and consciousness. Nevertheless, even in order to 
understand the neocortex, it is important to maintain a 

broader picture of the brain: there are many things that the 
neocortex does not need to do because other systems, like 
cerebellum, are taking care of them. The aim of this paper is 
to explain in simple terms what the cerebellar system does 
and demonstrate this in simulations. 
 

II. SELF-SUPERVISED LEARNING 

Thanks to extensive experimental, theoretical and 
engineering research, the cerebellar “algorithm” is nowadays 
well understood[1,3,4,5,6,7,8,9,11,12,13,14,15,16]. A brief 
summary of the research is that the cerebellar system turns 
out to be a predictor. In machine learning, predictors are 
usually adapted using supervised learning: there is a teacher 
who provides the correct answers and the task is to learn to 
mimic the answers provided by the teacher. Prediction tasks 
are about the only sensible supervised learning tasks in 
autonomous systems since there is no point of reinventing 
the wheel: if the teacher needs to be implemented anyway, 
there is no benefit in replicating the behaviour of the teacher. 
Supervised learning of prediction does make sense for an 
autonomous system because the system learns to provide the 
answers before the teacher gives the answers. Also, 
supervised learning is possible with a teacher who cannot 
give the correct answer but can give a correction. The 
student (or adaptive system) can therefore give faster and 
better answers than the teacher. This is pretty much the role 
of the cerebellar system: the cerebellar system is specialized 
in making accurately-timed predictions in the timescale of 
about 100 ms – 5 s. 

Since the teachers are also located in the brain, one can 
talk about self-supervised learning. Cerebellar predictions 
are used for many purposes and correspondingly there are 
many types of teachers. In motor tasks, the teacher can be, 
for instance, a spinal or brain-stem reflex or it can be a 
focused, conscious decision of the neocortex. Cerebellum is 
implicated not only in motor tasks but in purely sensory and 
cognitive tasks, too[2]. It is true not only for the cerebellar 
system but for many other adaptive modules in the brain that 
it is not the task but the algorithm that provides the most 
natural basis for understanding the modules. Nevertheless, 
motor tasks seem to be the most typical ones for the 
cerebellar system and they are also the focus in this paper. 
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III. CEREBELLAR SYSTEM 

Before going further into motor control, I will briefly 
introduce the anatomy of the cerebellar system and link it 
with the algorithm discussed above. The cerebellar system 
consists of the inferior olive nucleus (IO), cerebellar cortex 
(CB) and deep nuclei (DN). Their computational roles are 
depicted in Figure 1. The teaching signals are relayed 
through IO (but are generated by diverse systems as noted 
earlier). The climbing fibres from IO deliver the teaching 
signal to CB and DN which implement the inputoutput 
mapping of the cerebellar system. Roughly speaking, the 
cerebellar cortex is responsible for the accurate timing of 
cerebellar predictions but the deep nuclei implement the 
(linear) association between the inputs and outputs. Timing 
is implemented as disinhibition: normally CB inhibits DN 
but CB releases its inhibition at just the right moment to 
allow DN to activate its outputs [20,18]. Note that when 
people talk about cerebellum, they usually refer to the 
cerebellar cortex, shown in Figure 2. This is because it is 
anatomically much larger and most of the computations 
seems to be going on there. 

 
Figure 1. The “standard” architecture of the cerebellar system. 

 

 

 
 

Figure 2. The anatomical structure and connections of the cerebellar 
cortex[3] 

 
 

IV.  FEEDBACK-ERROR LEARNING AND UNKNOWN 

DELAYS 

The “cerebellar algorithm” is supervised prediction which 
has no direct links with motor control and there are many 
ways in which a predictor could be used in motor control. 

Looking at the cerebellar system alone therefore does not tell 
much about the role cerebellar system plays in motor control. 
In fact, it is quite possible that there are multiple different 
uses. This problem will be illustrated with a gaze 
stabilization task. 

When the visual images moves on the retina, it elicits an 
innate stabilizing reflex, the optokinetic reflex (OKR). There 
is a relatively simple wiring from retinal movement detectors 
to the eye muscles that compensate for the detected 
movement, making it smaller. In control engineering terms, 
this is a simple feedback regulator. The problem is that there 
is a significant delay between the compensatory control 
signals to eye muscles and sensory feedback from the signals. 
In control engineering this is called deadtime because from 
the viewpoint of the controller, the system appears to be 
unresponsive to any control signals. 

Deadtime is considered to be one of the most difficult 
problems in control engineering. Consider how a feedback 
controller behaves in the face of deadtime: if the gain is high, 
the system starts oscillating wildly as a result of 
overcompensation that occurs during deadtime. If, on the 
other hand, the gain is low, the system is sluggish and 
doesn’t properly compensate for errors—visual motion in 
this case. 

After issuing a motor command, the controller should 
realize that a particular visual error has already been 
compensated for and that further compensatory movements 
are no longer necessary. This is clearly a task where a 
predictor might prove useful. There are at least two ways in 
which a predictor can be used: 

Smith predictor: Predict the future state of the relevant 
sensory variable (such as visual motion in gaze stabilization) 
given a history of any relevant sensory and motor signals. 
Then use this predicted sensory variable as input to a 
feedback controller instead of the currently available 
(outdated) sensory input. 

Feedback-error learning: Try to compensate for any errors 
before they are generated. Use the responses of a feedback 
controller as an error signal (not the target) for updating the 
motor predictions. 

Roughly speaking, these two strategies are about sensory 
and motor prediction, respectively. The first strategy (alone) 
is called a Smith predictor after its inventor and the second 
one feedback-error learning because a feedback controller 
provides the error signal. These strategies can also be 
combined because sensory predictions can be useful inputs 
when making motor predictions. 

The Smith predictor dates back to 1957 and is wellknown 
and much studied in control theory. It can be quite sensitive 
to prediction errors which are bound to occur in real-world 
situations. In contrast, feedback-error learning seems to be 
more robust and a combination of the two where sensory 
prediction is used as an auxiliary variable for feedback-error 
learning should be able to combine the best of both worlds. 
This paper will concentrate on feedback-error learning.  

In feedback-error learning, the predictor is supposed to 
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predict and issue motor commands that silence the feedback 
controller. An obvious question that arises is how much in 
advance should the predictor try to issue the commands. 
Ideally this time would match the deadtime but it is usually 
difficult to know how long it is. If deadtime would be caused 
only by internal processing delays, it would at least be 
constant but unfortunately a significant portion of deadtime 
is often caused by inertia and other such properties of 
external world. These properties change from one task to 
another and correspondingly deadtime varies as well.  

A simple solution is to spread the error signal temporally 
such that appropriate corrections are made at the optimal 
time in addition to corrections that are made at suboptimal 
times. On the one hand this solution could be considered as a 
feasible engineering solution: it will be more probable that 
the correct action will be taken at the correct time and in 
many cases it is more important to get the total amount of 
corrective movements right irrespective of their exact timing. 
On the other hand, it would be interesing to know how 
accurate timing the system can then learn? One might expect 
that the achievable accuracy depends on the amount of 
temporal spreading of the error signal. Rather surprisingly, 
this is not the case as will be demonstrated next. 

Consider the following problem. There are 10 input 
channels x(t) = [x1(t)…. x10(t)]T which each carry 
information about the time. The nth channel xn(t) in 
maximally active at time t = n. There is some overlap in the 
activations, in other words, the activations are spread 
temporally. In Figure 3, 10 input channels are active at times 
1 ≤t≤ 10 and are silent at times 11 ≤ t≤ 20. The task 
is now to find a linear mapping y(t) = wT x(t) of the inputs 
which outputs y(t) = z(t) where the desired output z(5) = 1 
and z(t) = 0 for t≠5. 

If the error could be observed instantaneously e(t) = z(t) 
-y(t), the problem could solved with standard supervised 
learning: 

( ) ( )w e t x tΔ ∝                        (1) 
In this example the deadtime is five time steps: e(t) = 

z(t-5)-y(t-5). This is the signal that we receive from the 
teacher. If we knew the delay, we could simply match e(t) 
with x(t-5) in (1), but now we assume that deadtime is 
unknown for the learning system and the error signal e(t) 
will be matched with several x(t -τ) with various different 
τaccording to weighting kernel h(τ): 

( ) ( ) ( )w e t h x t dτ τ τΔ ∝ −             (2) 

 

Figure 3. Ten input channels carry slightly Overlapping information 
about the time. 

 
Figure 4. Eligibility traces Delaying which are achieved by 

 
Note that in on-line learning system the matching needs to 

be implemented by delaying x(t) but  conceptually this is 
equivalent to taking the error signal backward in time. The 
delayed inputs which are used in update rules are called 
eligibility traces. Figure 4 shows the eligibility traces of x(t) 
using delays of 4, 5 and 6 steps in proportions 1:2:1. 

Figures 5–8 show how the response improves. The correct 
total amount of response is learned very quickly. Initially the 
response has poor temporal resolution which is expected 
because both the inputs and the error signal have poor 
temporal resolution. What is surprising is that after a large 
number of iterations the system converges to a response 
which is close to optimal. 

    
Figure 5. The weights are initialized to zeros and therefore the output is zero 
Figure 6. After the first weight update, the system responds (blue) around 
the correct time but temporal accuracy is low. 

In the above example the error signal was temporally 
centered at the correct delay and one might thus wonder 
whether convergence to optimal solution was simply due to 
the fortunate guess. This is not the case as shown by Figures 
9–11. Although convergence is much slower, the iterations 
are clearly taking the system towards the correct solution. If 
100,000 iterations sound like a lot, consider that people make 
about three saccades per second. Practice makes perfect. 

  
Figure 7. After 10 weight updates  Figure 8. After 100,000 weight updates 

 

V. ROBOT SIMULATIONS 

A.  simulation environment 

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France. 
© the authors

 
 

0085



 

We will next review experiments which demonstrate 
feedback-error learning in a simple but demanding robot 
control task. The robot is shaped like a pole and it moves in 
an arena by controlling its two wheels. In these simulations 
both wheels always had the same speed. Even though the 
robot cannot fall sideways, the body is quite unstable—quite 
like a unicycle. The robot was simulated using Webots2 
robot simulation environment. 

 
Figure 9. Delay is underestimated. After the first weight update, the system 
responds with low temporal accuracy around time t = 6. 
Figure 10: After 10 weight updates, the response has sharpened a bit and 
moved towards the correct delay. 

 
 
Figure 11. After 100,000 weight updates, the response is remarkably good 
although some amount of transient high-fequency ripple in the response is 
evident after t > 5.  

 
Figure 12. The “reflex” which provides the error signal for the predictive 
controller. 

 
  

Figure 13. Behaviour with the reflex alone. 

 
B.  Results 

As expected, the reflex alone cannot keep the robot up 
(Figure 13) but it can give useful corrections which can be 
used by a predictive controller to update its predictions. The 

target anticipation was on average 40 time steps and it was 
temporally spread. After 160 trials (Figure 14), the robot is 
able balance itself but does not succeed in centering itself 
(this is very typical behaviour during learning). After 300 
trials (Figure 15), the robot can both balance and center itself 
rapidly and accurately. 

In the above simulations, the input for the cerebellar 
model (the linear mapping described in Section 4) was 
“proprioceptive”, concerning only its own body. A 
convenient property of predictors is that they can take almost 
any type of inputs; any information that will turn out useful 
will be used for making the predictions. Figure 16 depicts the 
behaviour of the robot after it has learned to anticipate a ball 
hitting it. The only change that needed to be made to the 
system was to include two input channels, one for balls 
approaching from the left and another for balls from the right. 
With more sensory inputs the controller could even learn to 
deal with balls of different properties. 

 
Figure 14. Behaviour after 300 trials 

 

 
Figure 15. The robot has learned to make anticipatory movements before 
the ball hits it and is therefore able to cope with the impacts. 

 

VI.  DISCUSSION 

The simulations discussed in this paper had just one 
degree of freedom while our own cerebellum controls 
hundreds of muscles. An interesting question is how this 
control generalizes to multiple degrees of freedom. I think 
that a feasible strategy for learning coordinated movements 
is to have independent reflexes for each degree of freedom 
(or reflexes that each control at most a few degrees of 
freedom) and to let the cerebellar model learn from 
experience how the movements in one part of the body need 
to be compensated by another part. This prediction task will 
be easier if the predictor for each degree of freedom gets 
information about the ongoing control signals sent to all 
other degrees of freedom. 

Since the role of cerebellum in motor control is well 
understood, we can ask what should other parts of the brain 
do to help cerebellum achieve its job. One thing that 
cerebellum clearly needs is information which is useful as 
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input for the predictor. For instance, if the mass distribution 
of the pole changes, the optimal control changes. It would 
therefore be useful to have system that monitors the dynamic 
properties of the body. In mammals, neocortex provides 
information about the state of the world, including the state 
of ones own body and its changing dynamic properties, 
intentions and goals, all of which are useful inputs for 
cerebellum to accomplish its control tasks. 

One thing that the cerebellar system clearly cannot do is 
acquire new goals and reflexes. Not all goals can be 
predefined in terms of hard-wired reflexes and it is therefore 
necessary to have systems that learn new reflexes or 
otherwise generate corrective movements that lead to 
rewarding consequences. In mammals, basal ganglia and 
prefrontal cortex are known to collaborate in the generation 
of such goal-directed behaviour.  

In conclusion, the “cerebellar algorithm”— prediction—is 
well understood on a general level. There are many 
(mutually compatible) ways in which a predictor can be used 
in control. In this paper, I focused on feedback-error learning. 
I showed that the temporal accuracy that can be achieved in 
such a strategy is surprisingly good, better than the temporal 
accuracy of the error signal. A used a simulated robot 
balancing task to demonstrate that feedback-error learning is, 
indeed, able to learn to control the unstable robot far better 
than the reflex that generates the error signals. The algorithm 
is computationally efficient and it is easy to use it as a 
module in a larger system. 
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