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Abstract. This paper presents an adaptive sliding-mode control algorithm for uncertain nonlinear system. It is 

very difficult to obtain the exact knowledge and it is required to approximate an unmolded dynamics with a 

nonlinear component. Therefore, a fuzzy basis function network is applied to approximate the unknown 

dynamics of nonlinear system. The paper employs a weight factor to adjust the ratio of direct and indirect 

adaptive fuzzy control, meantime a supervisory controller is introduced and a sliding-mode controller is to 

ensure optimal tracking performance of the closed-loop system. To prevent the system state variables 

unpredictable, this paper designs an observer to estimate the unpredictable states. The control structure and 

learning rules are derived from a Lyapunov theory extension that guarantees both tracking errors and 

parameter estimate errors in the closed-loop system are bounded. A two-arm robot is simulated to verify the 

feasibility of the proposed control scheme. 

Introduction 

The purpose of robot arm control is to maintain the dynamic response of the manipulator in accordance with 

some pre-specified performance[1]. Although the control problem can be stated in such a simple manner, its 

solution is complicated for the robot's highly nonlinear dynamics. In general, the control problem consists of 

obtaining dynamic models of the robotic system and using these models to determine control laws or strategies 

to achieve the desired system response and performance. Although researchers have proposed many methods, 

such as the feedback linearization of nonlinear systems, which cancels the nonlinearities of robot manipulators 

and imposes a desired linear model so that linear control techniques can be applied. However, the method is 

based on the exact knowledge of robot dynamics. Actually, it is very difficult to obtain the exact knowledge 

and it is required to approximate an unmodled dynamics with a nonlinear component. Neural networks and 

fuzzy systems provide good solutions to this challenging task. In this paper, we design an adaptive fuzzy 

sliding-mode controller for robot manipulators[2-4]. 

It has been proved that fuzzy basis function (FBF) networks can be universal approximators with arbitrarily 

small errors [5-7]. Therefore, a fuzzy basis function network is used to approximate and cancel the unknown 

dynamics of robot manipulators. As in , the control structure and learning rules are derived from a Lyapunov 

theory extension that guarantee both tracking errors and parameter estimate errors in the closed-loop system 

are bounded. By taking the uncertainties including approximation errors and external disturbances into 

consideration, such a technique can reject the effects.  

Nonlinear System 

Consider the following nth order nonlinear MIMO system[8], described by: 
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where 1 ( 1)( 1) T

1 1 1[ ]nrr r

n ny y y y y


        x  is the measurable state vector of the system；
T

1[ ] n

nu u   u  and T

1[ ] n

ny y   y  are the input and output of the system； ( )if x  and ( )ijg x  are 

unknown continuous functions；  
T

1 2 nd d d   d  is the unknown external disturbance, and 
id  is assumed  

have the upper bound, i.e. | ( ) |i id t D , , 1,2, ,i j n ,
1 2 nr r r r    . 

And the Eq. (1) can be rewritten as： 

( ) ( ) ( )r   y F x G x u d  (2) 

where T

1 2( ) [ ( ) ( ) ( )]nf f f   F x x x x , T

1 2( ) [ ( ) ( ) ( )]n   G x g x g x g x , 
1( ) [ ( ) ( )]i i in  g x g x g x , 

1,2, ,i n . 

The tracking error is defined as: 

11 1( ) ( ) ( )

( ) ( ) ( )
n

d

n d n

e t y t y t

e t y t y t

 

 

 (3) 

where T

1 2[ ]ne e e   e , 
1 2

T[ ]
nd d d dy y y   y , 1 2

1 2

( )( ) ( )( ) T[ ]n

n

rr rr

d d d dy y y   y , 

1

1 1 1

( )( ) T[ ]n

n n n

rr

d d d d d d dy y y y y y        Y , 1 ( )( ) T

1 1 1[ ]nrr

d n n ne e e e e e          e Y x , ( ) T[ ]ir

i i i ie e e    e , 

1 ( )( ) T

1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ ]nrr

d n n ne e e e e e          e Y x ， 1,2, ,i n . 
( )r

d d d Y AY By  (4) 

If ( )F x  and ( )G x  are known and free of external disturbance, i.e., d 0 , we get  an ideal control law: 
* 1 ( ) T( )[ ( ) ]r

d e

   u G x F x y C e  (5) 

where 
1 2

diag[ ]
ne er er er   C C C C , 

1

T

1[ ]
i i i

e e e

er r rc c c


   C  are the feedback gain matrixes. 

Applying Eq.(5) into Eq.(2): 
( ) ( 1)

1 0r e r e

rc c   e e e  (6) 

i.e. 

lim ( ) 0
t

t


e  (7) 

However, ( )F x  and ( )G x  can’t be exactly known and the disturbance d  is uncertain in the real systems. 

Algorithm Structure 

It has been proved that FBFN can be universal approximators with arbitrarily small errors [3, 9], assuming 

that: 

1 1
ˆ ˆ( | ) ( )  F x Φ x  (8) 

2 2
ˆ ˆ( | ) ( )  G x Φ x  (9) 

3 3
ˆ ˆ( | ) ( )d   u x Φ x  (10) 

where T Tˆ ˆ ˆ( ) diag[ ( ) ( )]   Φ x x x , T

1 11 1[ ]n     , 1 1 T

1 1[ ]i i ni     , T

2 21 2[ ]n     , 
2 2 T

2 1diag[ ]i i ni     , 2 2 2 T

1[ ]ji ji nji     , T

3 31 3[ ]n     , 3 3 T

3 1[ ]i i ni     . 

Choosing the following control law u : 
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b c r s   u u u u u  (11) 

where 

T

2

0

1
ˆ( )b os


u L C P e  (12) 

3
ˆ(1 ) ( | )c I d    u u u x  (13) 

1 ( ) T

2 1
ˆ ˆˆ ˆ( | )[ ( | ) ]r

I d e

     u G x F x y C e  (14) 

1

1

0

1
( )

2
r s



u L R E  (15) 

where 
bu  is the feedback controller, and 

ru  is H
 robust controller, and 

su  is a supervised controller , 

and ( )sL , R , 
1E , 

2P  are given in the following texts[10]. 

And the definitions 
1( ) diag[ ( ) ( )]ns s s  L L L , 1

1( ) i i

i

m m

i i ms s b s b


   L , 1i im r  , 1,2, ,i n  , which 

satisfies the following equation: 
1 1 1 * 1 1

1
ˆˆ ˆ( ) ( ){ [ ( )( ) ( )( ) ] (1 ) ( )( ) ( )( ) ( ) }I d b r ss s s s s s s               E H L L F F L G G u GL u u GL u u u L d  (16) 

su  is a supervised controller: 
* 1

1 ( )

0 0

0

T 1 T T 1

1 2 1

( ) sgn( )
ˆ(1 )

1 1
ˆ /

2 2

r

s I d d

U

e o

s I
  





 

   



      



L E L
u u u y

C e F LR E LC P e E L F

 (17) 

Where 

1*

1

0

1

V V
I

V V

  
 

 
 (18) 

T

1 1

1

2
V  e P e  (19) 

Where V  is a positive number. 

Given certain matrixes 
2Q  and 

3Q , there always exits 
2P  and 

3P , making the following equations. 

T 1 T

1 1 1 1 22

1

0l l l l

l l




  

      
  
 

I
A P P A P B R B P Q

P B C

 (20) 

T T T

2 2 3( ) ( )e e    A BC P P A BC Q  (21) 

Where   is a designed parameter, 
1 2diag[ ]nr r r   R I I I , r  is a positive number, and 1 2(1/ ) 0  R I . 

Applying the control law (11) and the following adaptive law into system (2): 
T

1 1 1 1 1
ˆ( )l      Φ x E  (22) 

T T

2 2 1 2 2
ˆ( )i l Ili i      Φ x E u  (23) 

T

3 3 1 3 3
ˆ(1 ) ( )l       Φ x E  (24) 

The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense 

that all signals involved are uniformly bounded and the tracking error will converge to zero asymptotically. 

Proof. We choose that: 

T T T T T

1 2 1 1 2 2 3 3

1 2 3

1 1 1 1 1
ˆ ˆ tr( )

2 2 2 2 2
V

  
          e P e e P e  (25) 

Then  
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 (26) 

and it can be further written as: 

T 2 T1 1

2 2
V    E QE  (27) 

Because 
2L  , then ˆ ˆ, , , Lx x e e , and limt E 0 . We get limt e 0  and ˆlimt e 0 , 又because 

ˆ e e e  and T

1 eE C e , so 
1limt E 0 . 

Simulation 

The robotic manipulators' dynamics can be rewritten as[7]: 

d( ) ( , ) ( ) ( )    M q q C q q q G q F q τ τ  (28) 

The parameters of a two-link robot are: 

1 2 3 2 2 3 2

2 3 2 2

2 cos cos
( )

cos

p p p q p p q

p p q p

   
  

 
M q  3 2 2 3 1 2 2

3 1 2

sin ( )sin
( , )

sin 0

p q q p q q q

p q q

   
  
 

C q q  

4 1 5 1 2

5 1 2

cos cos( )
( )

cos( )

p g q p g q q

p g q q

  
  

 
G q  ( ) 0.02sgn( )F q q  

d 1 2 3d d d  τ e e  

The simulation values are as follows: T[2.90 0.76 0.87 3.04 0.87]p , T[0.1 0.2 0.6]d , 9.8g  , 

0( ) 0.2* ( ) M q M q , 
0( , ) 0.2* ( , ) C q q C q q , 

0( ) 0.2* ( ) G q G q , T

0 [1.0 1.0]q , T

0 [0.4 0.4]q , 
T

d [1 0.2sin( ) 1 0.2*cos( )]t t   q . And select prober parameters, and we get the simulation result showed in 

Fig. 1. 
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Fig. 1   Simulation Result 

Conclusions 

In this study, an adaptive sliding-mode control algorithm is proposed to handle uncertain robotic dynamical 

systems. To prevent the system state variables unpredictable, this paper also designs an observer to estimate 
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the unpredictable states. The control structure and learning rules are derived from a Lyapunov theory extension 

that guarantee both tracking errors and parameter estimate errors in the closed-loop system are bounded. 

From the simulation result, it is obvious that the proposed algorithm can achieve good results. 
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