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Abstract. When using the clustering algorithm, the implementation of the context quantization not 

only expands the application range of the quantizer, but also obtains better coding performance. 
However, those clustering algorithms depend on the choice of the similarity measure. In the the 

previous works, the increment of the description length was suggested but the result is that it cannot 
fully meets the similarity measure of various attributes, resulting in the performance of the clustering 
result deviation. In this paper, a new similarity measure which holds better mathematical description is 

given. The increment of the amazing measure, which denotes the similarity measure, two count vectors 
are discussed in this paper and its corresponding properties are also explained. The experimental 
results indicate that when using the proposed similarity measure, both the stability of the context 

quantizer and the corresponding coding results can be optimized at the same time.  

Introduction 

Efficient context modeling entropy coding technique [1] always plays an important role in the field 
of digital signal compression. Modeling is the key to enhancing the compression efficiency, which 
takes advantage of the correlation between source symbols as much as possible. By conditioning for 

the current symbol, the entropy of the conditional probability distribution is reduced. Actually, in 
practice, these distributions are estimated through the counting approach and then used to drive the 

arithmetic encoder for assigning the code word for each symbol. Theoretically, the entropy of the 
conditional probability distribution is the lower band of the code length for coding every symbol. It 
means that if the entropy is low, coding compression effect is more ideal. However, there are a variety 

of factors influencing the coding performance. One important of them is the context dilution. In 
training or coding process, each count vector obtains its corresponding data and the number of these 
data is used to estimate distributions [2]. If the number of data is not enough to achieve the distribution 

with high efficiency, the distribution will be trend to the uniform distribution which holds the highest 
entropy. The context quantization is an efficient approach to tackle the context dilution. Actually, the 

context dilution makes the coding result including high model cost [3]. In order to make each count 
vector containing more number of data, integrating some count vectors into one is an ideal method. It 
is also the way what context quantization does. The first context quantizer is CALIC algorithm in [4], 

which uses the empirical quantizer to partition the space of the context. After modifying, CALIC could 
achieve ideal coding results. The strict optimized context quantizers are the minimum conditional 

entropy context quantization (MCECQ) in [5,6] and the minimum adaptive code length context 
quantization (MCLCQ) in [7,8]. However, these two quantizers have their flaws. MCECQ relies on the 
input of the quantization levels, which implies that MCECQ cannot achieve the optimized class 

adaptively. MCLCQ cannot obtain the optimized results for I-ary source only for binary case. Actually, 
in [9, 10], the context quantization based on the clustering algorithms are suggested. In [9], the 
modified genetic algorithm is used to cluster the context model for achieving the quantization levels 

adaptively. In [10], the increment of the description length is defined as the similarity measure between 
two conditional probability distributions and the affinity propagation is employed to implement the 

context quantization. Both of these two quantizers can achieve the similar results with the previous 
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optimized context quantizers. However, the increment of the description length is not the strictly 
similarity measure, which limit the performance of the coding system.  

Actually, in the derivation of the increment of the description length, there are new items to be 
considered. In this paper, researchers call it the amazing measure. Meanwhile, the increment of the 

amazing measure is also discussed in the the present work, including the features which indicate that 
the increment of the amazing measure is suit for judging whether two conditional probability 
distributions are similar. Then the increment of the amazing measure is used for the context 

quantization to improve the coding efficiency. 

Amazing Measure  

In the context modeling entropy coding, the conditional probability distributions are unknown. 

Usually, these distributions are estimated by using their corresponding count vectors. When a count 

vector },,,{ 110  Innn V is given, the estimator is described by (1) 





In

n
ixp

I

i
i

i











1

0

)(
                                                             (1) 

Where in denotes the number of symbols whose value is i and  denotes the initial number of the 
count vector. When each probability is calculated by (1), the conditional probability distribution is 

determined. Its’ corresponding description length under the given count vector can be calculated by (2)  
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Where n denotes the total number of symbols the count vector contains. Meanwhile, according to [x], 

the representation (2) can also be formed as (3) 

  )|(* CxHnL                                                        (3) 

Where )|( CxH denotes the entropy of the conditional probability distribution , which are from the 
estimation by using the count vectorV .  denotes the model cost to describe the context model. In a lot 
of previous researches, the objective of context quantizers is to minimize the descript ion length L . 

Actually, from (4), it is obviously that if )|( CxH is small, the total description length L will not be large. 
With this discussion, the context quantization can aim to minimize the entropy of the estimated 

distribution. However, the entropy is unknown so that the objective of the optimization is lost. 
However, actually, along with the estimation process, when more and more symbols are coded, they 
are used to obtain new estimation. The conditional probability distribution on the current time is 

different from those in different times, which implies that the current entropy is the value that can be 
calculated. On the other hand, the uniform distribution holds the maximum value of entropy. It means 

that if values of in in the count vector V are similar with each other. The resulted distribution will tend 

to the uniform distribution. It is opposite to the objective. Based on this purpose, it is necessary to 
determine the state of the count vector at the current time weather this count vector is trending to the 
uniform distribution. In this paper, researchers give the definition of the amazing measure to denote the 

state above. For the count vector V , its current amazing measure is described by (4) 
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From (4), it is easy to find that if each value of in
is larger than 1, and the value of is larger than 0. In 

the coding process, it means that the count vector obtain the counts of symbols, which implies that if a 

count vector is efficient, the corresponding amazing measure can holds a no -negative value. 
Meanwhile, in [x], the increment of the description length L  is represented by (5) 
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In this representation, L contains the amazing measure. Researchers gave the discussion that the 

increment of the description length was equivalent to the similarity measure between two count 
vectors (actually two conditional probability distributions estimated by count vectors respectively). 
The first form of (5) can be considered as the weighting of the relative entropy. The relative entropy is 

the similarity measure of two distributions. Then if this equality will be satisfied, the second form of (5) 
is needed to holds the properties that the similarity measure have. It indicates that the amazing measure 

can also be used as the similarity measure.  
When clustering algorithm is suggested to implement the context quantization, the similarity 

measure should be determined firstly. In practice, the purpose with this similarity measure is to choose 

the two count vector to merge under the criterion that they are similar. Actually, if two same count 
vectors are merged, the amazing measure of the merged count vector will not be changed. Namely, the 

zero value of the amazing measure can be seemed as the criterion that two count vectors are the same 
one. Then researchers can obtain the representation (6) to express the similarity of two count vectors: 

2,121 )(                                                                (6) 

Where  denotes the increment of the amazing measure when two count vectors whose amazing 

measures are 1 and 2 respectively. Meanwhile, it is easy to find that 0 . Then researchers use  as 

the similarity measure to implement the context quantization. 

Context Quantization based on the Minimum Increment of the Amazing Measure 

When the similarity measure is determined, many clustering algorithms, such as K-means and 
Affinity propagation, can be used to implement the context quantization. The steps of the context 

quantization based on the clustering algorithm with the similarity measure, amazing measure, are 
listed as follows: 

Step 1: When determining the order of the context model, initializing the context model. 
Step 2: Updating the count vectors with the process of the coding. 
Step 3: If the number of symbols encoded comes to the given number, go to step4, otherwise, go to 

step 2 for coding. 
Step 4: Calculating the increment of the amazing measure by (4) and (6). Then the chosen clustering 

algorithm is employed to implement the context quantization. When the quantization process is end, 
go back to Step 2 to continue coding. 

Experiments and Results 

In the experiments, the proposed context quantizer is employed to compress the image sources. 
Similar with the reference [2], K-means is used to implement the context quantization. The only 
difference is the amazing measure is used in the experiments instead of the Euclid distance used in [8]. 

For simplifying experiment, 6 images are quantized into 8 levels and the 4 of them are used to train the 

context model with order 3, ),,|( 321 xxxxP . The last 2 images (lena, barb) are used as the coding source.  
After quantization and coding, the number of clusters and the code length (bit) are listed in Table 1. 

Table 1 The Comparison of the Coding Results by Two Context Quantizer 

image 
proposed KMCQ 

cluster Code length (bit) cluster Code length (bit) 

barb 231 256901 213 259260 

lena 231 174325 192 179252 
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From Table 1, it is obvious that the code length from the proposed algorithm is better than the result 
from KMCQ in [8]. The reason is that the amazing measure is related to both the count vector and the 

entropy. Namely, both the space correlation and statistic correlation are contained in the amazing 
measure. Based on this similarity measure, the clustering algorithm can achieve the better results 

which are benefit by the clustering result more reasonable. Meanwhile, the context quantization based 
on the amazing measure can obtain stable quantization level, which the KMCQ cannot remain.  

 Above all, the increment of the amazing measure is more suitable for the similarity measure. The 

objective of the context quantization is achieved. 

Conclusions 

In this paper, a new similarity measure which holds better mathematical description is given. The 

increment of the amazing measure, which denotes the similarity measure two count vectors are 
discussed in this paper and its corresponding properties are also explained. The experimental results 

indicate that when using the proposed similarity measure, both the stability of the context quantizer 
and the corresponding coding results can be optimized at the same time. 
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