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Abstract. Convex function is a kind of very important function. In the proving inequality, optimization theory, 

operations research, control theory and other fields of applied mathematics, convex function has many 

applications. This paper introduces the definition and properties of convex function, and Hadamard inequality; 

then discusses applications of convex function in proving inequalities and verifying astringency of series. 

Introduction 

Convex function is an important concept in mathematical analysis, which relates to the proof of many 

mathematical propositions. In higher mathematics, we frequently encountered this kind of special function when 

we discuss properties of functions by derivative. Convex function has very practical value in many practical 

applied problems. Many authors [1-9] studied properties and applications of convex function. 

Definition (see [1]) Suppose that )(xf be a function defined on interval I. If the following relation 

)1,0(,,),()1()())1(( 212121  tIxxxftxtfxttxf ,                                                            (1) 

holds. Then, )(xf is called a convex function on interval I.  If the inequality (1) is the strict inequality, Then 

)(xf is called a strict convex function on interval I. 

Lemma 1 (see [1]) If )(xf is a differential function defined on the closed interval ],[ ba . Then )(xf is a 

convex function on the closed interval ],[ ba  when and only when  

     ).,(,0)('' baxxf                                                                                                                                                (2) 

)(xf is a strict convex function when and only when  

     ).,(,0)('' baxxf                                                                                                                         (3) 

Lemma 2 (see [1]) If )(xf  is differential on the closed interval ],[ ba ,  then the following statement are 

equivalence 

)(xf is a convex function on interval ],[ ba ; 

)(' xf is a increasing function on interval ],[ ba ; 

For ],[, 21 baxx  , the inequality 

      2 1 1 2 1'f x f x f x x x                                                                                                          (4) 

holds. 

Lemma 3 (see [2]) If )(xf  is convex function on the closed interval ],[ ba ,  then the following inequality 
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                                                                                            (5) 

holds. 

This paper firstly introduces the definition and properties of convex function, and Hadamard inequality; then 

discusses applications of convex function in proving inequalities and verifying astringency of series. 
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Application of convex function 

The convexity of convex function and its definition is established on the bases of inequalities. This fact makes 

the convex function to be an important tool in proving inequality. 

Example 1 (see [2]) Suppose that  x  is a continuous function on interval 0,a , and ( )f y  is twice 

differentiable with  '' 0f x  , then 

    
0 0

1 1a a

f t dt f t dt
a a

 
 

  
 

  .                                                                                                  (6) 

Proof. Let  
0

1 a

b t dt
a

  , then (6) can be rewritten 

      
0

1 a

f t dt af b
a

  .                        

Since  '' 0f x  , ( , )x   , by Lemma 1 and Lemma 2, we have       'f x f b f b x b   , 

thus 

         'f t f b f b t b    . 

Integrating the two side of the above inequality, we have 

         
0 0 0

'
a a a

f t dt f b dt f b t b dt       

       
0

' '
a

af b f b t dt af b b     

          
0 0

1
' '

a a

af b f b t dt f b a t dt
a

       . 

 af b  

So we have proved the inequality 

      
0 0

1 1a a

f t dt f t dt
a a

 
 

  
 

  . 

Example 2 (see [3]) Let 0, 0,a b  prove the following inequality 
1

1

2

b b a

a

b a b
ab

e a

  
  

 
.                                                                                                               (7) 

Proof.  Let   lnf x x  , then    2

1
" 0, 0,f x x

x
    . By Lemma 1, we see that  f x is a convex 

function on 0, . By hadamard inequality (5) in Lemma 3, for two positive real numbers ,a b , we have 
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It implies that 
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Example 3 (see [4]) Let 0,
2

x
 

 
 

, prove the inequality 

   
1 cos2 1 cos2

sin cos 2
x x

x x
 

  .                       (8) 

Proof.   Since   xf x x  is a convex function on 0, , for 0, 0,a b   we have 

   
1

2 2

a b
f f a f b

 
     

 
. 

Let 2 2sin , cos ,a x b x  then  
1

2 2
2sin cos 1 1 2

2 2 2 2 2

a b x x
f f f

       
         

      
. 

Since        
2 2sin cos

2 21 1
sin cos

2 2

x x

f a f b x x
 

       
, we have  

   
2 2sin cos

2 2sin cos 2
x x

x x  . 

It implies that 

   
1 cos2 1 cos2

sin cos 2
x x

x x
 

  . 

Example 4 (see [5]) Suppose that  f x is a convex function on ,N  , and  'f   is bounded, 

then
1

k

i

a




 converges, where 

   
 

11

2

k

k
k

f k f k
a f x dx

 
   . 

Proof. Since  f x  is a convex function on  ,N  , by Lemma 2, we see that  'f x  is increasing 

on ,N  and       'f x f k f k x k    holds. So 

      
11

1 2
2

k

k
k

a f k f k f x dx


      

          
11

1 2 '
2

k

k
f k f k f k x k f k dx



         

          
1

1 2 (2 1) ' 2 '
2

f k f k f k k f k kf k        

           
1 1

1 ' ' '
2 2

f k f k f k f f k       

    
1

' 1 '
2

f k f k   , 

where  , 1 .k k    By Lemma 3 we see that 
   

 
11

2

k

k

f k f k
f x dx

 
  holds, So 

1

k

i

a




 is   

series with positive term.  Since          
1 1

' 1 ' ' '
2 2

n

k

k n

a f n f N f f N


      , we see that positive 

term series 
1

k

i

a




 converges. 

Example 5 (see [5]) Suppose that  f x is a convex function on 1, , and  'f   is bounded, then 
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the convergence of series  
1k

f k




  is same as integral  
1

f x dx


 . 

Proof.  Since  f x  is a convex function, by Lemma 2, we know that  '' 0f x   and  'f x  is increasing, 

by Lemma 3 we see that 
   

 
11

2

k

k

f k f k
f x dx

 
  holds. By Example 4, we see that the series with 

positive term 

  
   

 
1

1

1

2

k

k
k

f k f k
f x dx

 



  
 

 
    

converges. Since 

   
 

   
 

1

1
1 1

1 1

2 2

k

k
k k

f k f k f k f k
f x dx f x dx

  

 

      
     

   
   , 

We see that the convergence of series 
   

1

1

2k

f k f k



 
  is same as the integral  

1
f x dx



 . Because 

 f x  is a convex function, we know that there is a 0M   such that  f x  is Invariant sign when x M . 

Thus, the convergence of series 
   

1

1

2k

f k f k



 
 is same as  

1k

f k




 . In summary, the convergence of 

series  
1k

f k




  is same as  
1

f x dx


 .  

Summary 

In many problems, we often encountered in the proof of some inequalities. Proof of inequality often requires 

some high skills.  Proof process can be made to be simple and clear using properties of a convex function. But 

the key of this method is constructing appropriate convex functions. This paper discusses applications of 

convex function in proving inequalities and verifying astringency of series. 
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