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Abstract. Functions are the important fundamental concepts in mathematics and the key research object in 

mathematical analysis.  Convex function is a class of very important functions which is widely used in pure 

mathematics, functional analysis, optimization theory, mathematical economics. This paper firstly introduces a 

definition of convex function, and then gives properties of convex function and its judging theorem, finally, gives 

examples which show how to prove more complex inequalities using Jensen inequality of discrete form. 

Introduction 

Since the beginning of twenty-first Century the establishment of the theory of convex functions, the concept 

of convex function has been widely used in many branches of mathematics, for example in mathematical 

analysis, function theory, functional analysis, optimization theory and so on. Many authors [1-11] studied 

properties and applications of convex function.  

Definition (see [1]) Let )(xf be a function defined on interval I. If  

)1,0(,,),()1()())1(( 212121   Ixxxfxfxxf .                                               (1) 

Then, )(xf is called a convex function on interval I,   and )(xf is called a strict convex function on interval 

I  when the inequality (1) is the strict inequality. 

  Lemma 1 (see [2]) Suppose that )(xf is a continuous function defined on the closed interval ],[ ba , and is 

differential on the open interval ),( ba . Then )(xf is a convex function on the closed interval ],[ ba  when and 

only when  

     ).,(,0)('' baxxf                                                                                                                                                (2) 

)(xf is a strict convex function when and only when  

     ).,(,0)('' baxxf                                                                                                                         (3) 

Lemma 2 (see [3]) (Jensen inequality of  discrete form) Suppose that )(xf is a convex function on 
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holds. 

This paper discusses how to prove more complex inequalities using Jensen inequality of discrete form. 

Application of Jensen inequality of discrete form 

In many problems, we often encountered in the proof of some inequalities. Proof of inequality often requires 

some high skills.  Proof process can be made to be simple and clear using Jensen inequality of the discrete form 

of a convex function. But the key of this method is constructing appropriate convex functions 

Example 1 (see [4]) Prove the inequality    
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    Proof: Let tetf )( , we have 0)(''  tetf , then 

)(tf is a strict convex function on interval ),(  . From (1), we have   
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Example 2(see [1]) Prove the inequality 
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where cba ,,  are positive real numbers.  

     Proof: Let 0,ln)(  xxxxf , then 
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By Lemma 1, we see that )(xf  is a convex function on interval ),0(  . From (4)in Lemma 2,we have 
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Example 3(see [5]) Prove the following inequalities 

 (a) nnnn aaaa arctanarctan)arctan( 1111    ;                                                       (7) 
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where ,,,2,1,0,0 nja jj    121  n  . 

    Proof: (a) Let ),0(,arctan)(  xxxf , then 
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Using Lemma 1, we see that )(xf is a strict convex function on interval ),0(  . From Jensen inequality (4), we 

get 

)arctanarctan()arctan( 1111 nnnn aaaa    . 

It implies the required inequality nnnn aaaa arctanarctan)arctan( 1111    . 
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We see that )(xf  is a strict convex function on interval ),0(  . By Jensen inequality (4), we obtain 

)lnlnln()ln( 22112211 nnnn aaaaaa    )ln( 2

2

1

1
n

naaa


  , 

i.e. n

nnn aaaaaa
   2

2

1

12211 . 

1322



 

Example 4(see [6]) Suppose that ,),,,2,1(,
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Example 5(see [7]) Suppose that )(xg  is a integrable function on interval ],[ ba with ,)( dxgc  )(yf  is 

a convex function on interval ],[ dc , then 
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Proof: Since )( yf (or )(xg ) is integrable function on interval ],[ dc  (or on interval ],[ ba ), we have 
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Limiting on both sides of the above inequality, we have 
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Since )(yf  is a continuous function, we obtain 
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By the Integrable property of f and gf  , we have proved the required inequality 
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Summary 

In many problems, we often encountered in the proof of some inequalities. Proof of inequality often requires 

some high skills.  Proof process can be made to be simple and clear using Jensen inequality of the discrete form 

of a convex function. But the key of this method is constructing appropriate convex functions. This paper gives 

examples which show how to prove more complex inequalities using Jensen inequality of discrete form. 
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