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Abstract. The genome compression algorithm based on the Hilbert space-filling curve is proposed in 

this paper. In order to utilize the correlations among the bases in the genome sequence, our algorithm 
firstly use the Hilbert space filling curve to map the genome sequence into a new 2-D image. Then the 
image obtained is encoded by the context weighting modeling technology. For context weighting, the 

values of weights are corresponding to the description length of the context model which is 
corresponding to their weights respectively. When the receiver obtain the mapping image, the reverse 

Hilbert space filling matrix is used to help the decoding procedure. The experiments results indicate 
that the final compression results by our algorithm are better than the results by other similar 
algorithms, although the useless area which will lead to the reduce of the compression efficiency is 

resulted in the mapping image by our algorithm. 

Introduction 

The genome compression can reduce the genome storage cost to improve the compression 

efficiency. Although the efficient compression results can be achieved by using the substitution 
algorithms[1-3]. However, when the size of the dictionary becomes larger and larger, the costs to code 

the item indexes will become too long, which actually reduce the compression efficiency. Meanwhile, 
in order to reduce the coding cost in the substitution algorithms, the dictionary can be initialized. But in 
this way, the cost to code the dictionary should not be ignored. Especially in [3], although the highest 

compression efficiency can be achieved by using this algorithm, however, the cost to code the 
dictionary which is used in this algorithm is not included in its code length. If the receiver has no this 

dictionary, the decoding process is not executed. It implies that the cost to describe the dictionary can 
not be ignored in the substitution algorithms.  

On the other hand, the entropy coding based on the context modeling technology is used for the 

genome sequence compression. These algorithms can obtain the high compression efficiency by using 
the correlation among the bases in the genome sequence to construct the conditional probability 
distributions to drive the arithmetic encoder. However, due to the indels in the genome sequence, the 

context modeling by using the past bases directly can not obtain the context model with high coding 
efficiency. In[4], Pihno concluded that the compression results by using the context model with finite 

orders will be better than the results by using the context model with higher order. In order to 
sufficiently utilize the correlation among bases but not to lead to the high model order, the context 
weighting is employed. The similar algorithm[5-7]are also use context modeling method for genome 

compression. However, all of these algorithms fall into that the initial genome sequence are not deal 
for ensuring more correlation can be used.  

In this paper, the Hilbert spacing filling curve is suggested to map the genome sequence into 2-D 
images in order to achieve higher compression efficiency. The details will be discussed in this paper. 
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Let 0,, xxn  denote a genome sequence and each tx denotes the current base to be coded. The 
codelength L for coding this genome sequence can be described as: 
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Where ),,( 0xxP n  denotes the joint probability distribution of 0,, xxn  . However, it is not easy to 

estimate these conditional probability distributions ),,|( 01 xxxP tt  in practice. One intuitive method is to 

estimate distributions ),,|( 1 Kttt xxxP   . Thus, L can be described approximately as (2) 
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Where K is the order of the context model. Theoretically, the entropy of ),,|( 1 Kttt xxxP   is larger than 

the entropy of ),,|( 01 xxxP tt  , namely, this approximate estimation may increase the codelength. 

However, for some memoryless source with order K , it is satisfied that ),,|(),,|( 011 xxxPxxxP ttKttt    , 

or ),,|(),,|( 111   KtttKttt xxxHxxxH  . It implies that increasing the number of bases which are conditioned 

on the current base tx does not always reduce the entropy furthermore. To this way, in purpose of 

achieving better estimation, these K bases should be mostly correlated to tx . For some sources, such as 

images, the current symbol and its neighboring symbols are correlated with each. Thus, in context 
modeling for those sources, the past K symbols are used as conditions. However, for genome sequence, 

due to the existences of indels and fracture sub sequences, correlations among these neighboring bases 
are weaken. In context modeling for genome sequence, conditional probability distributions with high 

compression efficiency can not be obtained by directly using past K bases for construction.  
On the other hands, any operations of reducing dimensions can weak the correlations among 

neighboring symbols and verse vice. Namely, if the genome sequence can be mapped into signals with 

two dimensions, the more correlations among bases could be used for context modeling. In this paper, 
Hilbert space filling technology is employed to do this mapping operation. 

Hilbert space filling 

One signal in dimension 1 can be mapped into dimension 2 by using Hilbert space filling curve. 
When the order of Hilbert curve is given, the curve is extended to 2-dimension space and the 

corresponding space can be filled sufficiently with the increment of orders. The Hilbert space filling 
curves with order 3 and 6 are shown in Fig. 1.  

 

 

 

(a) order 3  (b) order 6 

Fig. 1  Two Hilbert space filling curves with order 3 and 6 

In practice, Hilbert space filling curve is used to map one genome sequence into 2 dimension. In 

order to implement this mapping operation, the Hilbert space filling matrix should be obtained firstly.  
One Hilbert space filling matrix can be obtained by recursion operation which is described as (3) 
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And its initial input could be   
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After iterations, the Hilbert space filling matrix with different orders can be obtained. For instance, 
the matrix with order 2 is given in (5) 
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In (5), the value n of the item in the location (x,y) means that the thn base in the genome sequence 
should filled on this location. For instance, the value of the item (2,2) is 3, the third bases in the 

genome sequence is ‘A’ (value 0). In the filling process, this base will be filled on the location (2,2) by 
using value 0 to instead the value 3 in this location. When each base is filled in the matrix, an image 

which represents the spacial distribution of the genome sequence can be obtained. In Fig. 2, two 
images of two genome sequences(NC_010162 and NC_013595) are given. 

  

 

 

 

(a) NC_010162  (b)NC_013595 

Fig. 2  Two images of two genome sequences mapping 

This procedure can be describes as follows: Obtaining the corresponding Hilbert space filling 
matrix, put each base on its corresponding location of the matrix. For in 

In context-based entropy coding technology, the conditional probability 

distributions ),,|( 1 Kttt xxxP   are constructed to instead the true distribution ),,|( 01 xxxP tt   

Details of the proposed algorithm 

Firstly, we make the genome sequence changing to two binary sequences by using (3), then we use 

HSFC to map these two binary sequence into two bilevl images. For compressing these two images, 
two context models are constructed separately. Due to the binary source, more conditions may not 

always lead to higher model cost. In this work, 10 previous bases of the current base are used for 
conditioning, i.e. The order of our context models is 10. To select bases, the conditions template is 
given in Fig. 3 
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The template of conditions used in our algorithm

 

By using this template, the context model can be constructed easily, which contains different 

correlated bases. In coding process, every coded base are used to join into its corresponding counts 
vector to estimated the conditional probability distribution for coding next base. However, when 

HSFC is employed, there are no-base area needed to be handled. Actually, the structure of the mapped 
image is known for both sender and receiver, which make this problem more easy. In coding process, if 
the current base is in the no-base area, its coding is ignored and on the receiver side, the value ’X’

 

is 

filled into this corresponding location. Namely, we can determine the structure of the image aforehand, 
then we can just assign the codewords for each base without coding those no-base symbols.

 

Experiments and Results

 

Three genome sequences NC_013595, NC_013131 and NC_010162 are used as the source 
sequence to testify our compression algorithm. For comparison, the results from [5-7] are also listed in 

the table. All of these results are given in Table 1.

 

Table 1

  

The comparison of compression results

 

sequence

 

size

 

results (bit/base)

 

algorithm[5]

 

algorithm[6]

 

algorithm[7]

 

proposed

 

NC_013595

 

10341314

 

1.796

 

1.759

 

1.742

 

1.740

 

NC_013131

 

10468872

 

1.817

 

1.779

 

1.770

 

1.765

 

NC_010162

 

13033779

 

1.755

 

1.743

 

1.732

 

1.725

 

It is obviously that the proposed algorithm can perform better results than other previous algorithms. 
It comes from the deal of the genome sequence into 2-D images, which leads more correlation can be 

used for compression.

 

Conclusions

 

The genome compression algorithm based on the Hilbert space-filling curve is proposed in this 
paper. In order to utilize the correlations among the bases in the genome sequence, our algorithm 
firstly use the Hilbert space filling curve to map the genome sequence into a new 2-D image. Then the 

image obtained is encoded by the context weighting modeling technology. For context weighting, the 
values of weights are corresponding to the description length of the context model which is 
corresponding to their weights respectively. When the receiver obtain the mapping image, the reverse 

Hilbert space filling matrix is used to help the decoding procedure. The experiments results indicate 
that the final compression results by our algorithm are better than the results by other similar 

algorithms, although the useless area which will lead to the reduce of the compression efficiency is 
resulted in the mapping image by our algorithm.
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