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Abstract. In this paper, based on the definition of group object, the definition of action of group object
on arbitrary object in a topos is given, some equivalent characterizations are also obtained.

Introduction
Recall that a topos is a category which has finite limits and every object of has a power object. For
a fixed object 4 of category , the power object of 4 is an object £4 which represents S42(_ X 4) 5o

. f
that (-,PA) = Sub(_X A) naturally. It means that for any arrow B' = B, the following diagram
commutes, where % is the natural isomorphism.

p(A,B .
Homg(B, PA) —228) . gub(B'x A)
Uorng(f.f’A)l lSub(fo)
w(A.B’)
Homg(B', PA) Sub(B’ x A)
Fig. 1

As a matter of fact, the category of sheaves of sets on a topological space is a topos. In particular, the
category of sets is a topos. For details of the treatment of toposes and sheaves please see [1], [2], [3],
[4]. For a general background on category theory please refers to [5], [6],[7].[8].[9].[11].[12].

Main results

Throughout this paper, we work with a fixed topos , All objects mentioned belong to the
topos . We begin with some definitions.
Definition 1. A group objectin  isan object G of  equipped with three arrows:

1) €:1>G the unit;

2) M:GxG -G the product;

3) 1:G—>G

And the three arrows satisfy the following diagrams.

Y Y ~ € < y Bl Y jx{l Y ~ EX ) Bl
GG R QL@ 6 B e BT o e SR e S
hxe h ! lh g
-y ! Y ]’ ‘v ¥ ~y i‘v
GxG——G 7 - G G
Fig. 2
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- t (A, - )
G—GxG=——GxG

Fig. 3
In above two figures, h is the projective morphism and K : GxG — G s the diagonal morphism. one
can express this equivalently by the familiar identities:
a-(b-c)=(a-b)-c; a-e=e-a=a
It follows that the hom-set Hom (X, G) are natural in X, it determines a group structure;
conversely, a group structure on HomE (X,G) gives the structure of an group object.

Intopos , amorphism X ——G js regarded as a generalized element of the group objects G, the
generalized element is applied sucessfully in the patially ordered objects, please refer [8].

By the above, one can express the composite

fg=mo(f,g): X 5GxG—>G

or an inverse

flzicf:X—5G—5G

Definition 2. Let G be a group objects and © any object of . An action of G on Q is a

GxQ -0

morphism # = #a such that the following both diagrams commute.

1xG 'VXIza-Gx.-"l G xG x . \ir(rx A

G Gx A

M m x 1

M

A

Fig. 4
This action can be denoted by a dot, as in #(9)=X-9 for X
Definition 3. LetG be any group object and © any object. If the action of G on Q is defined by
@ 9= forall @€Hom (X,2)and 9 SHom (X,G), then the action is trivial.

Definition 4. LetG be any group object and © any object. If the identity is the only element 9 €

Hom (X, G)such that "9 =¢ forall @ €Hom (X, ), then the action is faithful.
In general, the kernel of an action is the set of group elements that act like 1 and “fix” all

@€Hom (X, Q). (Wesay 9fixs aif ¥ 9=9)

The most useful actions of finite group objects are usefully internal (in some sense) to the group
structure. There are, two important ways in which a group object G can act on itself. (In other words,
we can take €2=G ) The first of these is the regular action defined by X"9 =*9 for all X€Hom (X,
G)and 9 €Hom (X,G). The other important action of G on itself is the conjugation action, where we
define X"9 =X =07xg_

If X<Gis any subobject of G and 9 € Hom (X, G), then as usual we define the product

={xg|xe X}
X-g=Xg

50, X g)G

. This can be used to define an action of G on the set of all subsets of G by setting
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Lemma 1. LetG be any group object and © any object and G act on €. For each 9 SHom (X,
G), define "o :Q_)Qby (@)7 =9 pen 7 ESym(Q)and the map G —>SYM(€) gefined

by e(g) 9 isa homomorphism whose kernel is equal to the kernel of the action.
Proof. If 9'N€ Hom (X, G)and @€ Hom (X, G)), then
(@) mym, =(a-g)m =a(gh)=(a) 7y

m=al=a

andso 7o’ = "o forall 9:N€G  Also, by definition 2, (a) ,and so "tis the identity

function '2on Q.
Now for 9 €Hom (X, G), we have @ "~ "1~ "6 thus "uis an element of Sym(Q).
we have 2(8)0(N) =77 =75, =0(gN) 114 95 homomorphism. An element 9 €€ lies in

ker(O) igg 7o =l , and this is equivalent to saying that "9 =%forall@ €Hom (X, Q); thatis, 9 is
in the kernel of the action.

Group actions can also be used to produce subgroup objects. If G actson Qand @€ Hom (X, G),
wewrite G« =1 9€ Hom (X, G)|% 9 =2} Thisis called the stabilizer of @inHom (X, G), and it

G. is always a subgroup object of G . We consider some examples.

ze{g eG‘xg =x}

is routine to check that

LetG act on itself via conjugation. If X€G | then .and since X° =X we can

see that the stabilizer in G of X€Hom (X,G) under conjugation is just Co (X)

We return now to the general case of a group object G acting on an object .

Definition 4. The action is transitive if for every two elements ¢’ A €Hom (X,€2), there exists an
element 9 €Hom  (X,G) with " 9=75

For instance, the regular action of G and the usual action on the right cosets of a subgroup object
are transitive. In general conjugation action of G on itself is not transitive, since if Y € Hom (X, G)

have different orders, then there can existno 9 € Hom (X, G) with X' = .

In general, if G acts on Q, then the orbits of this action are the sets of the form {a-g lge

Hom (X, G)}g Q
Lemma 2. Let G acts on Q. Then the orbits partition . This means
a.<2is the union of the orbits and
b. any two different orbits are disjoint.

Proof. Write O« ={

Q=00,

aeQ)

proving part (a).

a-glge Hom (X, G)} Since @-1=a we have aeoaand thus

We show now that if 7 €O« then O = O« We have ¥ =2 Xfor some X< Hom (X, G), and
thus

7-9=(@x)-g=axg<o0,

_ -1
This vyields O, goa. Also, *=7° X" 50 that a€0, and hence the above argument yields

0,c0 0,=0

7. We have shown that 7, as claimed.
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Finally, if 0, N0, # ®, choose #.Then £ . And part (b) is proved.

The partition of €2 by the orbits of an action is analogous to the partition of a group by the cosets of
a subgroup. This is not entirely accidental, since if HcG | we can let Hact on G by right
multiplication. In this case, the orbit containing 9 € Gis exactly the left cosets gH |

One of the major applications of actions is for counting. The key to this is the following theorem.

Theorem Let G act on Q and let Obe an orbit of this action. Let & €O and write H zGa, the

stabilizer. Then there exists a bijection O & {Hx|x G} .

f :OH{HX|XEG}anoIIOWS. If 7€0 choose X€G with S=a"X

y€0, MO 0,=0,=0

Proof. We construct a map

f (ﬂ) - HX. We need to check that this is well defined. In other words, if also B=a- y’ we

must establish that FX=HY as required.
Hx|x e G}

and set
Itis clear that | maps onto { Hx = f (a-x)

that T is injective, suppose that F(B)=1(7) Then A=aXang 7=aY yith HX=HY This
y=a-y=(a-h)-x=a-x=p

, since for any X, we have . Finally, to show

yields Y =™ for some heH | and hence
heH =G,

, Where the third equality
holds since
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