

Improvement of TF-IDF Algorithm Based on Hadoop Framework

Bin Li
Department of Computer Science

Colleague of Information Science & Technology
Jinan University

Guangzhou, China
gz-jnu-bg@hotmail.com

Yuan Guoyong
Department of Computer Science

Colleague of Information Science & Technology
Jinan University

Guangzhou, China
gdzsygy@gmail.com

Abstract-TF-IDF algorithm is often used in search engine, text
similarity computation, web data mining, etc. These
applications are often faced with the massive data processing.
Therefore, how to calculate the tf-idf quickly and efficiently is
very important. In this paper, we give a tf-idf algorithm based
on the hadoop framework. Experiments show that in the case
of massive data computing, the new method applying hadoop
framework is more efficient than the traditional methods.

Keywords-Hadoop, TF-IDF, distributed computing

I. INTRODUCTION

The tf-idf weight[1] (term frequency–inverse document
frequency) is a weight often used in information retrieval
and text mining. This weight is a statistical measure used to
evaluate how important a word is to a document in a
collection or corpus. The importance increases
proportionally to the number of times a word appears in the
document but is offset by the frequency of the word in the
corpus.Tf-idf algorithm is often used in search engine, web
data mining, text similarity computation and other
applications. These applications are often faced with the
massive data processing. So, how to calculate the tf-idf
quickly and efficiently is very important.

II. TF-IDF ALGORITHM

A. The term count in the given document is simply the
number of times a given term appears in that document.
For the term ti within the particular document dj,its
term frequency is defined as follows:

In the formula ,ni, j is the number of occurrences of the

considered term (ti) in document dj, and the denominator is
the sum of number of occurrences of all terms in document
dj.
B. The inverse document frequency is a measure of the

general importance of the term The formula are defined
as follows:

In the formula ,| D | is the total number of documents

in the corpus; is the number of documents
where the term ti appears (that is).

C. The tf-idf weight of term is the product of tf and idf.
The formula are defined as follows[2]:

III. ABOUT HADOOP FRAMEWORK

Hadoop is an open source distributed parallel
programming framework which can run on a large number
of cluster. HDFS distributed File System and MapReduce
computation model is its two main components. HDFS is
highly fault-tolerant and is designed to be deployed on low-
cost hardware. It provides high throughput access to
application data and is suitable for applications that have
large data sets[3,5]. MapReduce is a programming model
and an associated implementation for processing and
generating large data sets[4]. Users specify a map function
that processes a <key, value> pair to generate a set of
intermediate <key, value> pairs, and a reduce function that
merges all intermediate values associated with the same
intermediate key[5,6]. The relationship between HDFS and
MapReduce is shown as follow:

IV. THE IMPROVEMENT AND IMPLEMENTATION OF TF-IDF

IN MAP/REDUCE FRAME

The core idea of hadoop distributed computing is
partitioning task, running concurrently. From the tf-idf
formula, we can see, it is very suitable for distributed
computing to solve.Term frequency is only related to the
number of the term occurrences in the document and the
total number of terms in this document. Thus, by
partitioning the data, we can calculate in concurrent and
distributed way to accelerate the speed of word frequency
statistics. After calculating the term frequency, tf-idf weight
calculation will depend on the number of documents
containing the word (because the total number of
documents is a constant). So, we can also calculate tf-idf in
parallel if the number of documents containing the word is
known.In this paper, we design three MapReduce process to
achieve tf-idf calculation.

A. calculate the number of occurrences of the word in

document
In the mapper, we use regular expressions to match

words and write <<word#documentName>, 1> pairs to
intermediate values which will be processed by reducer.
Then we calculate the number of occurrences of the word in

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0391

document directly in the reducer. The output of reducer
need to be written to the intermediate files (tempFile1)
which will be processed in next MapReducer process. The
output is using <word # documentName> as the key, <n> as
the value. ’n’ is the number of occurrences of the term
‘word’ in the ‘documentName’. Function is designed as
follows:

Map()：
 Input: <documentLineNumer, contents>
 Output: <<word#documentName>, 1>

Reduce()：
Input: <<word#documentName>, 1>
Output: <<word#documentName>, n>

B. calculate the total number of words of each document

In this step, we reorganized the <key,value> pairs in
mapper(using documentName as key and <word=n> as
value). Then we calculate the total number of words of each
document in reducer. The output of reducer need to be
written to the intermediate files (tempFile2) which will be
processed in next MapReducer process. The output is using
<word # documentName> as the key, <n/N> as the
value. ’n’ is the number of occurrences of the term ‘word’
in hte document ‘documentName’, and ‘N’ is the total
number of words of ‘documentName’. Function is designed
as follows:

Map()：
Input: < <word#documentName>, n >
Output: <documentName,< word=n> >

Reducer()：
 Input: <documentName,< word=n> >

Output: <<word#documentName>, <n/N>>
C. calculate TF-IDF

In this step, we reorganized the <key,value> pairs in
mapper(using word as key and<documentName#n/N> as
value). Then we calculate the number ‘d’ which is the
number of documents containing this word and the number
‘D’ which is the total number of whole documents. At last,
we can calculate the TF-IDF according to formula TF-
IDF = n / N * log (D / d) .Function is designed as follows:

Map():
Input: <<word#documentName>, n/N>
Output: <word, <documentName#n/N>>

Reducer():
 Input: <word, <documentName#n/N>>

Output: <<word#documentName>, n / N * log
(D / d) >
D. The whole process flow

V. EXPERIMENTS AND ANALYSIS

A. Experimental data:We download 200,000 Chinese
documents from the text classification corpus
provided by Sogou laboratory as test corpus.

B. Data preprocessing: Split documents by using open
source Chinese word segmentation tools IKAnalyzer

and remove stop words at the same time. Management
too many small files will reduce the efficiency
hadoop.So we need to archive the dataset. The final
test data are as follows:

C. The hadoop cluster setup:We build a cluster by using

five computers. We use one machine as master which
is responsible for scheduling Job and managing file
namespace. And the rest of machines are responsible
for calculating tf-idf and storage files.

D. The test result
We assess tf-dif applying Map/Reducer frame with
traditional tf-idf. Traditional tf-idf is run in a machine,
and it can’t run in concurrent and distributed way.

From the figure, we can see,when dealing with small

dataset(<200MB), the gap between the old algorithm and
the new algorithm is not obvious. This is because that the
maintenance and network transmission of hadoop itself
requires some resource consumption. With the increment of
data, the calculating time of traditional tf-idf sharply
increases. But after applying hadoop, the calculating time
increase linearly with the increment of data, and is far less
than the former.

VI. SUMMARIES

This article makes use of the service provided by
hadoop, and improves the efficiency of traditional tf-idf
algorithm. If we want to continue to improve the efficiency,
we can use SequenceFile to deal with input [7], compress
the output of Mapper and Reducer or reduce the generation
of intermediate files. In addition, we can expand the scale
of the Hadoop cluster and change the parameters of the
cluster.

REFERENCES

[1] SALTON G, BUCKLEY C. Term-weighting approaches in

automatic text retrieval [J]. Information Processing and

Management, 1988, PP513 - 523.

[2] SALTON G, CLEMENT T Y. On the construction of effective
vocabularies for information retrieval[C].Proceedings of the 1973

Meeting on Programming Languages and Information Retrieval.

New York: ACM, 1973: 11.
[3] Hadoop, http://hadoop.apache.org/hdfs/.

[4] Ralf Lammel, Data Programmability Team. Google’s MapReduce

Programming Model-Revisited[R]. Redmond, WA, USA: Microsoft
Corp. 2007.

[5] Owen O’Malley. Programming with Hadoop’s Map/Reduce[R].

ApacheCon EU, 2008.
[6] Jeffrey Dean, Saniay Ghemawat. MapReduce: Simplified Data

Processing on Large Ousters[C]. OSDI’04: Sixth Symposium on

Operating System Design and Implementation, San Francisco, CA,
December, 2004.

[7] Tom White. Hadoop: The Definitive Guide[M]. O'Reilly,2010.5.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0392

Figure 1. The relationship between HDFS and MapReduce

Figure 2. the whole process flow

TABLE I. TEST DATA

Dataset Size(MB) Number of Document
S1 40 10000
S2 80 20000
S3 160 40000
S4 320 80000
S5 520 130000
S6 780 200000

Figure 3. the Comparison between old and new tf-idf

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0393

