

 An algorithm for the shifting checkers problem
Daxin Zhu1, a, Xiaodong Wang2, b,*

1Quanzhou Normal University, 362000 Quanzhou, Fujian, China.
2Fujian University of Technology, Fuzhou, 350108 Fujian, China.

aemail: dex@qztc.edu.cn, bwangxd@139.com, *Corresponding author

Keywords: Moving Checkers; optimal algorithm; Fibonacci number

Abstract. In this paper, we study Moving Checkers Game, an interesting shifting checkers game
consisting of n black checkers and 1 white checkers. We have proved that the minimum number of
steps needed to play the game for general n is 2n+1. We have also presented an optimal algorithm
to generate all of the optimal solutions in linear time for very large size. The number of solutions
for the game of size n is the (n+2)th Fibonacci number.

Introduction
Moving Checkers Game is an interesting shifting the checkers game consisting of n black

checkers and 1 white checkers, where the aims is to find a solution in the smallest number of steps
[1,2,3,10]. The 2+n positions of the row are numbered 2,1, +n . Initially, the n black
checkers are put in the position n,1, , and the white checker is put in the position (1)O . The
position 1+n is initially vacant. In the final state of the game, the leftmost position is occupied by
the white checker, and the right most n positions numbered 2,3, +n are occupied by black
checkers, leaving the position 2 vacant.

If we denote a black checker by b , a white checker by w , and the vacant position by O , then
any status of the checker board can be specified by a sequence consisting of characters wb, and

O . The problem is then equivalent to transforming the initial sequence Owbb
n

 to the sequence

n

bbwO in the minimum number of steps. There are only two permissible types of moves. A
move of the game consists of sliding one checker into the current vacant position, or jumping over
the adjacent checker into the current vacant position. The goal of the game is to make a small
number of moves to reach the final state of the game. We are interested in algorithms which, given
an integer n , generate the corresponding move sequences to reach the final state of the game with
the smallest number of steps. In this paper, we present an optimal algorithm to generate all of the
optimal move sequences of the game consisting of n black checkers and 1 white checker.

Preliminaries
In this section, we will investigate some properties of the Moving Checkers Game. We will

discuss the game in a more general setting [4-9]. In a general moving checkers game, there are n
black checkers and m white checkers put on a table from left to right in a row. The 1++mn
positions of the row are numbered 1,1, ++mn . Initially, the n black checkers are put in the
position n,1, , and the m white checkers are put in the position 1,2, +++ mnn . The
position 1+n is initially vacant. In the final state of the game, the left most m positions
numbered m,1, are occupied by white checkers, and the right most n positions numbered

1,2, +++ nmm are occupied by black checkers, leaving the position 1+m vacant.
If we denote a black checker by b , a white checker by w , and the vacant position by O , then

any status of the checker board can be specified by a sequence consisting of characters wb, and

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)

© 2015. The authors - Published by Atlantis Press 931

O . The problem is then equivalent to transforming the initial sequence

mn

wwObb
 to the

sequence

nm

bbOww
 in the minimum number of steps[5]. There are only two permissible types

of moves. A move of the game consists of sliding one checker into the current vacant position, or
jumping over the adjacent checker into the current vacant position.

In a row of checkers of the game, if two checkers have different colors and the black checker is
on the left of the white checker, then the two checkers are called an inversion pair.

Of the two types of checker moves, we can further list 12 different cases of the moves into a
table, as shown in Table 1. Sliding a black checker right into the current vacant position is denoted
as),(rbslide . The other three moves),(lbslide ,),(rwslide , and),(lwslide are defined
similarly. Jumping a black checker right over the adjacent white checker into the current vacant
position is denoted as),,(rwbjump . The other 7 moves),,(lwbjump ,),,(rbwjump ,

),,(lbwjump ,),,(rbbjump ,),,(lbbjump ,),,(rwwjump , and),,(lwwjump are defined
similarly. These 12 cases of moves are numbered from 1 to 12.

The column Inversions of Table 1 denote the inversion increment of the checker row when the
corresponding case of moves applied. Similarly, the column V-Inversions of Table 1 denotes the
vacant inversion increment of the checker row when the corresponding case of moves applied.

It is not difficult to verify the following facts on the optimal solutions to play the game.
Lemma 1 Any optimal solution for playing the game of shifting the checkers with minimum

number of moves consists of only the classes of moves numbered from 1 to 4 in Table 1.

Table 1: All cases of checker moves

From Lemma 1, we can conclude that the following theorem holds.
Theorem 1 For the general game of shifting the checkers consisting of n black checkers and

m white checkers, it needs at least mnnm ++ steps to reach the final state of the game from its
initial state.

Since there are only 4 possible moves),(lwslide ,),(rbslide ,),,(lwbjump , and
),,(rwbjump , we can simplify our notation for these 4 moves to)(lslide ,)(rslide ,)(ljump , and

)(rjump in the following discussions. According to Theorem 1, if we can find a move sequence to
reach the final state of the game with mnnm ++ steps, then the sequence will be an optimal move
sequence, since no move sequence can reach the final state of the game in less than mnnm ++
steps.

932

An Optimal Algorithm
In the following sections, we will study the moving checkers game for the special case of 1=m .

In this case we need at least 12 +n steps to reach the final state

n

bbwO from its initial state

Owbb
n

 . There are only two different optimal solutions for the special case of 1=n .
In general cases of n , we can denote our problem)(nshift as the problem to transform the

initial game board Owbb
n

 to the goal game board

n

bbwO according to move rules. For the
general problem)(nshift , there are only 2 choices of the first move from the initial game board. If

)(lslide is chosen as the first move, then the next move)(rjump must be mandatory according to

Lemma 1. In this case, the game board is changed to Owbbb
n

1−

, or equivalently, our problem is
reduced to 1)(−nshift . If)(rslide is chosen as the first move, then the following 3 steps

)(ljump ,)(rslide and)(rjump are mandatory according to Lemma 1. In this case, the game

board is changed to Owbbbb
n

2−

, or equivalently, our problem is reduced to 2)(−nshift . After n2

moves, the game board can be changed to

n

bbOw . One more move)(lslide will reach the goal

game board

n

bbwO . The total number of moves is 12 +n , and thus the move sequences are
optimal.

Based on the discussions above, we can design a recursive algorithm to generate all optimal
move sequences of problem)(nshift .

The optimal solution found by the algorithm shift n can be presented by a vector x . For
1,21,2,= +ni , the step i of the optimal move sequence is given by ix . This means that the

checker located at position ix will be moved in step i to the current vacant positions and leaving
the positions ix the new vacant positions. This can also be viewed that x is a function of i ,
which is called a move function. In the next section we will discuss the explicit expression of
function x .

If we denote 1=0 +nx and
12,1= 1 +≤≤−− nixxd iii (1)

Then the vector d will be a move direction function of the corresponding move sequence.
A related function t can then be defined as 12,1=

=1
+≤≤∑ nidt j

i

ji .

Since

iijj

i

j
j

i

j
i xnxxxxdt −+−−−∑∑ 1==)(== 01

=1=1

We have
12,11= +≤≤−+ nitnx ii (2)

Therefore, our task is equivalent to compute the function x or t efficiently.
Denote the number of different optimal move sequences of problem)(nshift as)(nρ , then

according to Algorithm 3.1 we have,

−+− 1>2)(1)(
1=2
0=1

=)(
nnn
n
n

n
ρρ

ρ (3)

933

The solution of this recurrence is
2=)(+nFnρ (4)

where nF is the n th Fibonacci number

 −
−

 +
nn

2
51

2
51

5
1 .

For all of these different optimal solutions, we have to label them to identify each individual
solution. In the recursion tree of the algorithm 3.1, whenever we have two choices)(lslide or

)(rslide , the tree edge corresponding to)(lslide is labeled 0, and the other tree edge
corresponding to)(rslide is labeled 1. Every leaf node of the recursion tree corresponds to a
different optimal move sequence of the game. The concatenation of the edge label on the path from
the root to each leaf node is a binary string of digits 0 and 1. This binary string can be seen as an
integer in its binary expression. In this manner, all of the different optimal solutions can be labeled
with a unique integer.

It is obvious that the integer labels in)(nL in sorted order are generally not consecutive. But
we can show that

})(log)(,20|{=)(1 nkkakknL n ≤+≤≤ − (5)
where)(ka is the number of 1’s in the binary expansion of integer k , and +)(log1 k is the

length of integer k in its binary expansion.
For each label)(nLk ∈ , let its binary expansion be i

i
k

i
bk 2=)(log

0=∑ . In our algorithm, the

meaning of bit ib is two folds. If 0=ib , then a)(lslide is chosen as the first move for the
problem)(inshift − , and then the problem is reduced to 1)(−− inshift . On the other hand, if

1=ib , then a)(rslide is chosen as the first move for the problem)(inshift − , and then the
problem is reduced to 2)(−− inshift . Since the game will be finished when its size reduced to 0,

we must have, 1)(1)(log

0=
+≤+∑ nbi

k

i
. It is equivalent to nkka ≤+)(log)(. It is obvious that the

largest label in)(nL must be 12 −n . Therefore, })(log)(,20|{)(1 nkkakknL n ≤+≤≤⊆ − .
On the other hand, for each integer })(log)(,20|{ 1 nkkakkj n ≤+≤≤∈ − , if the binary

expansion of j is used to guide the moves of the game, then the moves are well defined and the
game will be finished since njja ≤+)(log)(. Therefore, we have,

})(log)(,20|{)(1 nkkakknL n ≤+≤≤⊇ − .
Finally, we conclude that, })(log)(,20|{=)(1 nkkakknL n ≤+≤≤ − .

The Explicit Solutions to the Problem
For any fixed label)(nLk ∈ , let the optimal solution of the problem)(nshift labeled k be

),,,(= 1221
k
n

kkk xxxx + . In this section, we will find an explicit solution to compute k
jx , for all

12),1(+≤≤∈ njnLk .

For the problem)(nshift , let i
i

k

i
bk 2=)(log

0=∑ and 121 +≤≤ nj . If we define 0=ib for all

)(log> ki then we have i
i

n

i
bk 2=

0=∑ . In our algorithm, bit ib is followed by)2(1 ib+ moves.
So, for integer j , we have to find an integer),(= jki α such that in the solution labeled k the

move j follows bit ib . It is readily seen that { }jbtjk s
t

snt ≥+∑≤≤)2(1min=),(
0=0α . It is

equivalent to

934

−−≥∑
≤≤

1/2min=),(
0=0

tjbtjk s

t

snt
α (6)

Let

+++ ∑∑ s

j

s
s

j

s
bjbjk

0=0=
12=)(12=),(b (7)

Then, from bit 0b to bit jb , a total of),(jkb moves have been played.

By using these two functions, we can give an explicit expression of k
jx for all

12),1(+≤≤∈ njnLk as follows.
Theorem 2 For the general game of shifting the checkers)(nshift consisting of n black

checkers and 1 white checkers, there are total of 2+nF different optimal solutions. The optimal
solutions can be labeled by)(nL as shown in (5). For any)(nLk ∈ , let the solution labeled k

be),,,(= 1221
k
n

kkk xxxx + , then for any 12),1(2=)(log

0=
+≤≤∈∑ njnLbk i

i
k

i
, k

jx can be computed
by

1=:

3>:2/2
3=:/2
2=:1/2
1=:1/2

0=:
1>:1/2
1=:1/2

= i

i

k
j b

tjt
tjt
tjt
tjt

b
tjt
tjt

x

++
+
+−
++

++
+−

 (8)

where),(= jki α and 1),(= −ikt b .

 Proof.
For any)(nLk ∈ , we have i

i
n

i
bk 2=

0=∑ , where 0=ib for all)(log> ki . For any

121 +≤≤ nj we can determine the index),(= jki α such that the move j follows bit ib .
Before bit ib , 1),(= −ikt b moves have been played. In bit ib , move j is the)(tj − th move.
If 0=ib , then the two moves followed are)(lslide and)(rjump . These two moves contribute to
move distances -1 and +2 respectively. Therefore, if 1=tj − , then the move distance is -1. If

2=tj − , then the move distance is -1+2=1. Similarly, if 1=ib , then the 4 moves followed are
)(),(),(rslideljumprslide and)(rjump . These 4 moves contribute to move distances +1,-2,+1 and

+2 respectively. In these cases, the move distances are +1,+1-2=-1,+1-2+1=0, and +1-2+1+2=2
respectively.

Before bit ib , 1),(= −ikt b moves have been played, and a distance /2=)(11

0=
tbs

i

s
+∑ − has

moved. We finally conclude that if 0=ib , then 1/2= −txk
j when 1=tj − , and 1/2= +txk

j

when 2=tj − . Similarly, if 1=ib , the values of k
jx are /21,/21,/2 ttt +− and 2/2 +t , when

1,2,3=tj − and 4 respectively. ■

935

Conclusion
We have presented an optimal recursive construction algorithm for Moving Checkers Game. The

algorithm can produce all of the optimal solutions in linear time for very large size n . The number
of solutions for the game of size n is the 2)(+n th Fibonacci number

 −
−

 +
++ 22

2
51

2
51

5
1

nn

. In Section 4, an extremely simple explicit solution for each of the

labeled optimal moving sequences of the general game is given. The formula gives for each
individual step j , its optimal move in (1)O time.

Another similar game is to reverse the n checkers numbered n,1, by two permissible types
of moves slide and jump . It is not clear whether our methods presented in this paper can be
applied to this game. We will investigate the problem further.

Acknowledgement
This research was financially supported by the Natural Science Foundation of Fujian (Grant

No.2013J01247), and Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian
University Laboratory of Intelligent Computing and Information Processing.

References

[1] R. Bird, Pearls of Functional Algorithm Design, 258-274, Cambridge University Press, 2010.

[2] Erik D. Demaine, Playing games with algorithms, Algorithmic combinatorial game theory.
Proceedings of the 26th Symposium on Mathematical Foundations in Computer Science, LNCS
2136, 18-32, 2001.

[3] Erik D. Demaine and Martin L. Demaine, Puzzles, Art, and Magic with Algorithms, Theory of
Computing Systems, vol. 39, number 3, 473-481, 2006.

[4] J. Kleinberg, E. Tardos. Algorithm Design, 223-238, Addison Wesley, 2005.

[5] D.L. Kreher and D. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search,
125-133, CRC Press, 1998.

[6] A. Levitin and M. Levitin, Algorithmic Puzzles, 3-31, Oxford University Press, New York,
2011.

[7] John S. Gray, The shuttle puzzle ?? A lesson in problem solving, Journal of Computing in
Higher Education, Volume 10, Issue 1, 56-70, 1998.

[8] S. Sukparungsee, Y. Areepong, Exact Average Run Length of Double Moving Control Chart,
International Journal of Applied Mathematics & Statistics, Vol. 52, No. 2, 152-158, 2014.

[9] T. Yato and T. Seta. Complexity and completeness of finding another solution and its
application to puzzles. IEICE Trans. Fundamentals E86-A(5):1052-1060, 2003.

[10] D. Zhu, L. Wang, J. Tian and X. Wang, An Algorithmic Solution for a Single Player Computer
Game, International Journal of Applied Mathematics & Statistics, Vol. 52, No. 5, 21-28, 2014.

936

