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Abstract. In this paper, we study Moving Checkers Game, an interesting shifting checkers game 
consisting of n black checkers and 1 white checkers. We have proved that the minimum number of 
steps needed to play the game for general n is 2n+1. We have also presented an optimal algorithm 
to generate all of the optimal solutions in linear time for very large size. The number of solutions 
for the game of size n is the (n+2)th Fibonacci number.  

Introduction 
Moving Checkers Game is an interesting shifting the checkers game consisting of n  black 

checkers and 1 white checkers, where the aims is to find a solution in the smallest number of steps 
[1,2,3,10]. The 2+n  positions of the row are numbered 2,1, +n . Initially, the n  black 
checkers are put in the position n,1, , and the white checker is put in the position (1)O . The 
position 1+n  is initially vacant. In the final state of the game, the leftmost position is occupied by 
the white checker, and the right most n  positions numbered 2,3, +n  are occupied by black 
checkers, leaving the position 2 vacant. 

If we denote a black checker by b , a white checker by w , and the vacant position by O , then 
any status of the checker board can be specified by a sequence consisting of characters wb,  and 

O . The problem is then equivalent to transforming the initial sequence Owbb
n


  to the sequence 




n

bbwO  in the minimum number of steps. There are only two permissible types of moves. A 
move of the game consists of sliding one checker into the current vacant position, or jumping over 
the adjacent checker into the current vacant position. The goal of the game is to make a small 
number of moves to reach the final state of the game. We are interested in algorithms which, given 
an integer n , generate the corresponding move sequences to reach the final state of the game with 
the smallest number of steps. In this paper, we present an optimal algorithm to generate all of the 
optimal move sequences of the game consisting of n  black checkers and 1 white checker. 

Preliminaries 
In this section, we will investigate some properties of the Moving Checkers Game. We will 

discuss the game in a more general setting [4-9]. In a general moving checkers game, there are n  
black checkers and m  white checkers put on a table from left to right in a row. The 1++mn  
positions of the row are numbered 1,1, ++mn . Initially, the n  black checkers are put in the 
position n,1, , and the m  white checkers are put in the position 1,2, +++ mnn  . The 
position 1+n  is initially vacant. In the final state of the game, the left most m  positions 
numbered m,1,  are occupied by white checkers, and the right most n  positions numbered 

1,2, +++ nmm   are occupied by black checkers, leaving the position 1+m  vacant. 
If we denote a black checker by b , a white checker by w , and the vacant position by O , then 

any status of the checker board can be specified by a sequence consisting of characters wb,  and 
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O . The problem is then equivalent to transforming the initial sequence 



mn

wwObb
 to the 

sequence 



nm

bbOww
 in the minimum number of steps[5]. There are only two permissible types 

of moves. A move of the game consists of sliding one checker into the current vacant position, or 
jumping over the adjacent checker into the current vacant position. 

In a row of checkers of the game, if two checkers have different colors and the black checker is 
on the left of the white checker, then the two checkers are called an inversion pair. 

Of the two types of checker moves, we can further list 12 different cases of the moves into a 
table, as shown in Table 1. Sliding a black checker right into the current vacant position is denoted 
as ),( rbslide . The other three moves ),( lbslide , ),( rwslide , and ),( lwslide  are defined 
similarly. Jumping a black checker right over the adjacent white checker into the current vacant 
position is denoted as ),,( rwbjump . The other 7 moves ),,( lwbjump , ),,( rbwjump , 

),,( lbwjump , ),,( rbbjump , ),,( lbbjump , ),,( rwwjump , and ),,( lwwjump  are defined 
similarly. These 12 cases of moves are numbered from 1 to 12. 

The column Inversions of Table 1 denote the inversion increment of the checker row when the 
corresponding case of moves applied. Similarly, the column V-Inversions of Table 1 denotes the 
vacant inversion increment of the checker row when the corresponding case of moves applied. 

It is not difficult to verify the following facts on the optimal solutions to play the game. 
Lemma 1  Any optimal solution for playing the game of shifting the checkers with minimum 

number of moves consists of only the classes of moves numbered from 1 to 4 in Table 1.  
 

Table  1: All cases of checker moves 
 

From Lemma 1, we can conclude that the following theorem holds. 
Theorem 1  For the general game of shifting the checkers consisting of n  black checkers and 

m  white checkers, it needs at least mnnm ++  steps to reach the final state of the game from its 
initial state.  

Since there are only 4 possible moves ),( lwslide , ),( rbslide , ),,( lwbjump , and 
),,( rwbjump , we can simplify our notation for these 4 moves to )(lslide , )(rslide , )(ljump , and 

)(rjump  in the following discussions. According to Theorem 1, if we can find a move sequence to 
reach the final state of the game with mnnm ++  steps, then the sequence will be an optimal move 
sequence, since no move sequence can reach the final state of the game in less than mnnm ++  
steps. 
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An Optimal Algorithm 
In the following sections, we will study the moving checkers game for the special case of 1=m . 

In this case we need at least 12 +n  steps to reach the final state 




n

bbwO  from its initial state 

Owbb
n


 . There are only two different optimal solutions for the special case of 1=n . 
In general cases of n , we can denote our problem )(nshift  as the problem to transform the 

initial game board Owbb
n


  to the goal game board 




n

bbwO  according to move rules. For the 
general problem )(nshift , there are only 2 choices of the first move from the initial game board. If 

)(lslide  is chosen as the first move, then the next move )(rjump  must be mandatory according to 

Lemma 1. In this case, the game board is changed to Owbbb
n




1−

, or equivalently, our problem is 
reduced to 1)( −nshift . If )(rslide  is chosen as the first move, then the following 3 steps 

)(ljump , )(rslide  and )(rjump  are mandatory according to Lemma 1. In this case, the game 

board is changed to Owbbbb
n




2−

, or equivalently, our problem is reduced to 2)( −nshift . After n2  

moves, the game board can be changed to 




n

bbOw . One more move )(lslide  will reach the goal 

game board 




n

bbwO . The total number of moves is 12 +n , and thus the move sequences are 
optimal. 

Based on the discussions above, we can design a recursive algorithm to generate all optimal 
move sequences of problem )(nshift . 

The optimal solution found by the algorithm shift n  can be presented by a vector x . For 
1,21,2,= +ni  , the step i  of the optimal move sequence is given by ix . This means that the 

checker located at position ix  will be moved in step i  to the current vacant positions and leaving 
the positions ix  the new vacant positions. This can also be viewed that x  is a function of i , 
which is called a move function. In the next section we will discuss the explicit expression of 
function x . 

If we denote 1=0 +nx  and 
12,1= 1 +≤≤−− nixxd iii                  (1) 

Then the vector d  will be a move direction function of the corresponding move sequence. 
A related function t  can then be defined as 12,1=

=1
+≤≤∑ nidt j

i

ji . 

Since  

iijj

i

j
j

i

j
i xnxxxxdt −+−−−∑∑ 1==)(== 01

=1=1
 

We have 
12,11= +≤≤−+ nitnx ii         (2) 

Therefore, our task is equivalent to compute the function x  or t  efficiently. 
Denote the number of different optimal move sequences of problem )(nshift  as )(nρ , then 

according to Algorithm 3.1 we have, 
  











−+− 1>2)(1)(
1=2
0=1

=)(
nnn
n
n

n
ρρ

ρ                       (3) 
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The solution of this recurrence is 
2=)( +nFnρ                 (4) 

where nF  is the n th Fibonacci number 




















 −
−







 +
nn

2
51

2
51

5
1 . 

For all of these different optimal solutions, we have to label them to identify each individual 
solution. In the recursion tree of the algorithm 3.1, whenever we have two choices )(lslide  or 

)(rslide , the tree edge corresponding to )(lslide  is labeled 0, and the other tree edge 
corresponding to )(rslide  is labeled 1. Every leaf node of the recursion tree corresponds to a 
different optimal move sequence of the game. The concatenation of the edge label on the path from 
the root to each leaf node is a binary string of digits 0 and 1. This binary string can be seen as an 
integer in its binary expression. In this manner, all of the different optimal solutions can be labeled 
with a unique integer.  

It is obvious that the integer labels in )(nL  in sorted order are generally not consecutive. But 
we can show that 

})(log)(,20|{=)( 1 nkkakknL n ≤+≤≤ −           (5) 
where )(ka  is the number of 1’s in the binary expansion of integer k , and + )(log1 k  is the 

length of integer k  in its binary expansion. 
For each label )(nLk ∈ , let its binary expansion be i

i
k

i
bk 2= )(log

0=∑  . In our algorithm, the 

meaning of bit ib  is two folds. If 0=ib , then a )(lslide  is chosen as the first move for the 
problem )( inshift − , and then the problem is reduced to 1)( −− inshift . On the other hand, if 

1=ib , then a )(rslide  is chosen as the first move for the problem )( inshift − , and then the 
problem is reduced to 2)( −− inshift . Since the game will be finished when its size reduced to 0, 

we must have, 1)(1)(log

0=
+≤+∑  nbi

k

i
. It is equivalent to nkka ≤+ )(log)( . It is obvious that the 

largest label in )(nL  must be 12 −n . Therefore, })(log)(,20|{)( 1 nkkakknL n ≤+≤≤⊆ − . 
On the other hand, for each integer })(log)(,20|{ 1 nkkakkj n ≤+≤≤∈ − , if the binary 

expansion of j  is used to guide the moves of the game, then the moves are well defined and the 
game will be finished since njja ≤+ )(log)( . Therefore, we have, 

})(log)(,20|{)( 1 nkkakknL n ≤+≤≤⊇ − . 
Finally, we conclude that, })(log)(,20|{=)( 1 nkkakknL n ≤+≤≤ − . 

The Explicit Solutions to the Problem 
For any fixed label )(nLk ∈ , let the optimal solution of the problem )(nshift  labeled k  be 

),,,(= 1221
k
n

kkk xxxx + . In this section, we will find an explicit solution to compute k
jx , for all 

12),1( +≤≤∈ njnLk . 

For the problem )(nshift , let i
i

k

i
bk 2= )(log

0=∑   and 121 +≤≤ nj . If we define 0=ib  for all 

 )(log> ki  then we have i
i

n

i
bk 2=

0=∑ . In our algorithm, bit ib  is followed by )2(1 ib+  moves. 
So, for integer j , we have to find an integer ),(= jki α  such that in the solution labeled k  the 

move j  follows bit ib . It is readily seen that { }jbtjk s
t

snt ≥+∑≤≤ )2(1min=),(
0=0α . It is 

equivalent to 
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







−−≥∑
≤≤

1/2min=),(
0=0

tjbtjk s

t

snt
α          (6) 

Let 









+++ ∑∑ s

j

s
s

j

s
bjbjk

0=0=
12=)(12=),(b        (7) 

Then, from bit 0b  to bit jb , a total of ),( jkβ  moves have been played. 

By using these two functions, we can give an explicit expression of k
jx  for all 

12),1( +≤≤∈ njnLk  as follows. 
Theorem 2  For the general game of shifting the checkers )(nshift  consisting of n  black 

checkers and 1 white checkers, there are total of 2+nF  different optimal solutions. The optimal 
solutions can be labeled by )(nL  as shown in (5). For any )(nLk ∈ , let the solution labeled k  

be ),,,(= 1221
k
n

kkk xxxx + , then for any 12),1(2= )(log

0=
+≤≤∈∑  njnLbk i

i
k

i
, k

jx  can be computed 
by 

1=:

3>:2/2
3=:/2
2=:1/2
1=:1/2

0=:
1>:1/2
1=:1/2

= i

i

k
j b

tjt
tjt
tjt
tjt

b
tjt
tjt

x











++
+
+−
++





++
+−

                  (8) 

where ),(= jki α  and 1),(= −ikt β .  

 Proof. 
For any )(nLk ∈ , we have i

i
n

i
bk 2=

0=∑ , where 0=ib  for all  )(log> ki . For any 

121 +≤≤ nj  we can determine the index ),(= jki α  such that the move j  follows bit ib . 
Before bit ib , 1),(= −ikt β  moves have been played. In bit ib , move j  is the )( tj − th move. 
If 0=ib , then the two moves followed are )(lslide  and )(rjump . These two moves contribute to 
move distances -1 and +2 respectively. Therefore, if 1=tj − , then the move distance is -1. If 

2=tj − , then the move distance is -1+2=1. Similarly, if 1=ib , then the 4 moves followed are 
)(),(),( rslideljumprslide  and )(rjump . These 4 moves contribute to move distances +1,-2,+1 and 

+2 respectively. In these cases, the move distances are +1,+1-2=-1,+1-2+1=0, and +1-2+1+2=2 
respectively. 

Before bit ib , 1),(= −ikt β  moves have been played, and a distance /2=)(11

0=
tbs

i

s
+∑ −  has 

moved. We finally conclude that if 0=ib , then 1/2= −txk
j  when 1=tj − , and 1/2= +txk

j  

when 2=tj − . Similarly, if 1=ib , the values of k
jx  are /21,/21,/2 ttt +−  and 2/2 +t , when 

1,2,3=tj −  and 4 respectively. ■ 
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Conclusion 
We have presented an optimal recursive construction algorithm for Moving Checkers Game. The 

algorithm can produce all of the optimal solutions in linear time for very large size n . The number 
of solutions for the game of size n  is the 2)( +n th Fibonacci number 





















 −
−







 +
++ 22

2
51

2
51

5
1

nn

. In Section 4, an extremely simple explicit solution for each of the 

labeled optimal moving sequences of the general game is given. The formula gives for each 
individual step j , its optimal move in (1)O  time. 

Another similar game is to reverse the n  checkers numbered n,1,  by two permissible types 
of moves slide  and jump . It is not clear whether our methods presented in this paper can be 
applied to this game. We will investigate the problem further.  
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