The Improvement of The Total Flow-Time Problem under The Non-Idle Machine Constraint of Two Machine Open-Shop

Liu Lin
Zhengzhou Institute Of Aeronautical Industry Management Zhengzhou Henan,450015,China

Liu Weifeng
Zhengzhou Institute Of Aeronautical Industry Management
Zhengzhou Henan, 450015, China

Abstract

The total flow-time problem of two machine open-shop is NP-hard in strong sense. For the above problem without constrains, an explicit solution is constructed in this paper from the optimal schedule under the non-idle machine constraint, its total flow-time is reductive. The explicit solution under non-idle machine constraints must not be the explicit solution without constraints is proved under the consideration.

Keywords-Total flow-time, Open-shop, Efficient algorithm, Scheduling

I. INTRODUCTION

For n job $J_{j}(j=1,2, \cdots, n)$ will be working in m machine $M_{i}(i=1,2, \cdots, m)$, and all job are worked once on any machine, also working sequence is arbitrarily. It is called open-shop. Achugbue and Chin [2]have proved that $O 2 \| \sum c_{j}$ is NP-hard in strong sense. For the problem of the total flow-time problem of two machine open-shop that working time rely on the machine, is denoted by

$$
\begin{equation*}
O 2\left|P_{i j}=P_{i}\right| \sum C_{j} \tag{1}
\end{equation*}
$$

For problem(1.1), M.Dror [3]give the optimal solution under $2 P_{2} \leq P_{1}$, and give a efficient algorithm to following problem

$$
\begin{equation*}
O 2\left|P_{i j}=P_{i}, P_{2}<P_{1}<2 P_{2}\right| \sum C_{j} \tag{2}
\end{equation*}
$$

Siming Xiang and Guochun Tang [4]proved that M.Dror algorithm is wrong conclusion. They proved that the problem can transform a assignment problem, then

$$
\begin{equation*}
O 2 \mid P_{i j}=P_{i}, P_{2}<P_{1}<2 P_{2}, \text { Non-Idle } \mid \sum C_{j} \tag{3}
\end{equation*}
$$

is polynomial solvable, Hungary algorithm i.e. Wenci Yu and Gang Ying[5]give the explicit solution for the problem. In this paper, an explicit solution of problem (2)is constructed and its total flow-time is more reductive than problem (3). It show that the proved that explicit solution of problem (2)is not explicit solution of problem (3).

Following are definitions and marks.
Definition 1 For schedule S, if completion time of job j in M_{1} is smaller than in M_{2}, then we called job j is forward job, otherwise backward job.

Definition2 The cycling sub-schedule of problem(1.3),corresponding job subset is
$\{r, r+1, \cdots, r+l-1\}$, and r is called the origination job, l is called the length,processing sequencing as follows.

In $M_{1}:$ processing sequencing of jobs is $\{r, r+1, \cdots, r+l-1\}$,

In $M_{2}:$ processing sequencing of jobs is $\{r+1, \cdots, r+l-1, r\}$.

Definition3 The intersecting sub-schedule of problem(1.3), corresponding job subset is $\{r, r+1, r+2, r+3, r+4\}$, and r is called the origination job, its length is 5 ,processing sequencing as follows.

In M_{1} : processing sequencing of jobs is $\{r, r+1, r+2, r+3, r+4\}$.

In $M_{2}:$ processing sequencing of jobs is $\{r+1, r+3, r, r+4, r+2\}$.

Definition4 The parallel sub-schedule of problem(1.3) $\operatorname{Ir}(l)$,corresponding job subset is $\{r, r+1, \cdots, r+l-1\}$, and r is called the origination job, l is called the length, processing sequencing as follows.

In M_{1} : processing sequencing of jobs is $\{r, r+1, \cdots, r+l-1\}$,

In M_{2} : processing sequencing of jobs is $\{r, r+1, \cdots, r+l-1\}$.

The definitions and marks apply to problem(1.1)and problem 1.2).

II. Main results

For problem(1.3),namely O2 $\mid P_{i j}=P_{i}, P_{2}<P_{1}<2 P_{2}$, Non-Idle $\mid \sum C_{j} \quad$,suppose
$\mathrm{m}=\left\lceil\frac{P_{2}}{P_{1}-P_{2}}\right\rceil$, then $\frac{m+1}{m} P_{2} \leq P_{1} \leq \frac{m}{m-1} P_{2}$.
Theorem $1^{[5]}$ If the number of jobs n satisfy $3 \leq n \leq m$, the optimal schedule S_{*} of problem (1.3)is listed below.
(1)If $n \equiv 0(\bmod 3)$, then $S_{*}=T(3) T(3) \cdots T(3)$;
(2)If $n \equiv 1(\bmod 3)$, then $S_{*}=T(4) T(3) \cdots T(3)$;
(3)If $n \equiv 2(\bmod 3)$, then $S_{*}=T(3) T(3) \cdots T(3) Q(5)$.

Theorem $2^{[5]}$ If the number of jobs n satisfy $3 \leq n \leq m n>m$, the optimal schedule S_{*} of problem (1.3)is listed below.
(1)If $m \equiv 0(\bmod 3)$, then

$$
S_{*}=T(3) T(3) \cdots T(3) I(n-m)
$$

(2)If $m \equiv 1(\bmod 3)$, then
$S_{*}=T(4) T(3) \cdots T(3) I(n-m)$;
(3)If $m \equiv 2(\bmod 3)$, then

$$
S_{*}=T(3) T(3) \cdots T(3) I(n-m-1) .
$$

Lemma 1 If the number of jobs n satisfy $3 \leq n \leq m$, the total flow-time of the optimal schedule S_{*} of problem (1.3)is listed below.
(1)If $n=3 k$, then $\sum C_{j}=\frac{3}{2} k(k+1) P_{2}+k(3 k+2) P_{1}$
(2)If $n=3 k+1$, then

$$
\begin{aligned}
\sum C_{j} & =\frac{1}{2} k(3 k+5) P_{2}+\left(3 k^{2}+4 k+2\right) P_{1} \\
\text { (3)If } n & =3 k+2, \text { then } \\
\sum C_{j} & =\left(\frac{3}{2} k^{2}+\frac{9}{2} k+2\right) P_{2}+\left(3 k^{2}+5 k+3\right) P_{1} .
\end{aligned}
$$

Proof (1) Let $I=\{$ Forward jobs subscript of the optimal schedule $\left.S_{*}\right\}$,

$$
\bar{I}=\{\text { Backward jobs subscript of the optimal }
$$

schedule $\left.S_{*}\right\}$,
Then $I=\{3 \mu+1 \mid \mu=0,1, \cdots, k-1\}$,
$I=\{3 \mu+2,3 \mu+3 \mid \mu=0,1, \cdots, k-1\}$,

$$
\text { and } \begin{aligned}
\sum_{j \in I} C_{j} & =\sum_{\mu=0}^{k-1} 3(\mu+1) P_{2}=\frac{3}{2} k(k+1) P_{2}, \\
\sum_{j \in \bar{I}} C_{j} & =\sum_{\mu=0}^{k-1}\left[(3 \mu+2) P_{1}+(3 \mu+2) P_{1}\right]=k(3 k+2) P_{1},
\end{aligned}
$$

Therefore
$\sum C_{j}=\sum_{j \in I} C_{j}+\sum_{j \in \bar{I}} C_{j}=\frac{3}{2} k(k+1) P_{2}+k(3 k+2) P_{1}$.
The proof of(2)and(3)is slightly.
We improved the optimal schedule in theorem 1 allowing in the machine idle period of time below.

First, we consider $n=3 k$. After completion of the processing job $3 l$, processing job $3 l+1$ in M_{2} in first thing, after a period of time $t=(3 l+1) P_{2}-3 l P_{1}$, processing job $3 l+1,3 l+2, \cdots, 3 k$ in M_{1} continuously, processing job $3 l+2,3 l+3, \cdots, 3 k$ in M_{2} continuously. It is that
turn
schedule S_{*} to $S_{1}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}(3 k-3 l)$, among S_{1} there are idle time $t=(3 l+1) P_{2}-3 l P_{1}$ in M_{1} after completion of the processing job $3 l$.

Lemma 2 The total flow-time of the schedule

$$
S_{1}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}(3 k-3 l)
$$

${ }_{\text {is }} \sum C_{j}=\frac{3}{2} l(l+1) P_{2}+l(3 l+2) P_{1}$
$+(k-l)\left[\frac{1}{2}(9 l+9 k+3) P_{1}+9 l P_{2}-9 l P_{1}+3 P_{2}\right]$
Proof $\sum_{j \leq 3 l} C_{j}=\frac{3}{2} l(l+1) P_{2}+l(3 l+2) P_{1}$,
$\sum_{j>3 l} C_{j}=\sum_{i=1}^{3 k-3 l}\left[(3 l+i) P_{1}+3 l\left(P_{2}-P_{1}\right)+P_{2}\right]$
$=(k-l)\left[\frac{1}{2}(9 l+9 k+3) P_{1}+9 l P_{2}-9 l P_{1}+3 P_{2}\right]$
And $\sum C_{j}=\sum_{j \leq 3 l} C_{j}+\sum_{j>3 l} C_{j}$.
Theorem 3 Let $v=\frac{k}{5}+\frac{3 P_{2}-P_{1}}{15\left(P_{1}-P_{2}\right)}$, when l satisfy $v<l<k$, the total flow-time of the schedule
$S_{1}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}(3 k-3 l)$ is lesser than the schedule $S_{*}=T(3) T(3) \cdots T(3)$.
Proof When $v=\frac{k}{5}+\frac{3 P_{2}-P_{1}}{15\left(P_{1}-P_{2}\right)}<l<k$,

$$
\begin{aligned}
& \frac{1}{2}(9 l+9 k+3) P_{1}+9 l P_{2}-9 l P_{1}+3 P_{2}< \\
& \frac{3}{2}(k+l+1) P_{2}+(3 k+3 l+2) P_{1}
\end{aligned}
$$

Therefore the total flow-time of the schedule

$$
S_{1}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}(3 k-3 l)
$$

is lesser than the schedule $S_{*}=T(3) T(3) \cdots T(3)$ from lemmal and lemma 2.

Second, we consider $n=3 k+1$. After completion of the processing job $3 l+4$, there is a period of idle time $t=(3 l+5) P_{2}-(3 l+4) P_{1} \quad$ in $\quad M_{1} \quad$ and processing job $3 l+5,3 l+6, \cdots, 3 k+1$ in M_{1} continuously and processing job $3 l+5,3 l+6, \cdots, 3 k+1$ in M_{2} continuously. It is that turn schedule to $S_{*} \quad S_{2}=$ $T_{1}(4) T_{5}(3) \cdots T_{3 l+2}(3) I_{3 l+5}[3(k-l-1)]$, among S_{2} there are idle time $t=(3 l+5) P_{2}-(3 l+4) P_{1} \quad$ in $\quad M_{1}$ after completion of the processing job $3 l+4$.

Lemma 3 The total flow-time of the schedule
$S_{2}=T_{1}(4) T_{5}(3) \cdots T_{3 l+2}(3) I_{3 l+5}[3(k-l-1)]$
is $\quad \sum C_{j}=\left(\frac{9}{2} k^{2}-9 k l-\frac{15}{2} k+\frac{15}{2} l^{2}+\frac{35}{2} l+12\right) P_{1}$.
$+\left(9 k l-\frac{15}{2} l^{2}-\frac{37}{2} l+15 k-11\right) P_{2}$
Proof
$\sum_{j \leq 3 l+4} C_{j}=\frac{1}{2}[3(l+1)+5](l+1) P_{2}+\left[3(l+1)^{2}+4(l+1)+2\right] P_{2}$;
$\sum_{j>3 l+4} C_{j}=\sum_{u=3 l+5}^{3 k+1}\left\{u P_{1}+\left[(3 l+5) P_{2}-(3 l+4) P_{1}\right]\right\}$
Then
$=3(k-l-1)\left[\frac{3}{2}(k-l) P_{1}-P_{1}+3 l P_{2}+5 P_{2}\right]$
$\sum C_{j}=\sum_{j \leq 3 l+4} C_{j}+\sum_{j>3 l+4} C_{j}$.
Theorem 4 Let $v=\frac{k}{5}+\frac{2 P_{2}}{15\left(P_{1}-P_{2}\right)}-\frac{4}{3}$, when l
satisfy $v<l<k-1$,
the total flow-time of the schedule
$S_{2}=T_{1}(4) T_{5}(3) \cdots T_{3 l+2}(3) I_{3 l+5}[3(k-l-1)]$ is lesser than the schedule $S_{*}=T_{1}(4) T_{5}(3) \cdots T_{3 k-1}(3)$.

Proof From lemma1 and lemma2, the difference between the total flow-time of the schedule S_{*} and S_{2} is

$$
\sum_{S_{*}} C_{j}-\sum_{S_{2}} C_{j}=\left[\left(P_{2}-P_{1}\right)\left(\frac{3}{2} k-\frac{15}{2} l-10\right)-P_{2}\right](k-l-1)
$$

As a result, when $v=\frac{k}{5}+\frac{2 P_{2}}{15\left(P_{1}-P_{2}\right)}-\frac{4}{3}<l<k-1, \sum_{S_{k}} C_{j}-\sum_{S_{2}} C_{j}>0$, that is $\sum_{S_{*}} C_{j}>\sum_{S_{2}} C_{j}$.

Finally, we consider $n=3 k$.After completion of the processing job $3 l$, processing job $3 l+1$ in M_{2} in first thing, after a period of idle time $t=(3 l+1) P_{2}-3 l P_{1}$ in M_{1}, processing job $3 l+1,3 l+2, \cdots, 3 k+2$ in M_{1} continuously, processing job $3 l+2,3 l+3, \cdots, 3 k+2$ in M_{2} continuously. It is that turn schedule $\quad S_{*}=T(3) T(3) \cdots T(3) Q(5)$ to $S_{3}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}[(3 k+2)-3 l]$, among S_{3} there is idle time $t=(3 l+1) P_{2}-3 l P_{1}$ in M_{1} after completion of the processing job $3 l$.

Lemma 4 The total flow-time of the schedule

$$
S_{3}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}[(3 k+2)-3 l]
$$

is $\sum C_{j}=\left(\frac{15}{2} l^{2}+\frac{9}{2} k^{2}-9 k l+\frac{15}{2} k-\frac{11}{2} l+3\right) P_{1}$.

$$
+\left(9 k l-\frac{15}{2} l^{2}+\frac{9}{2} l+3 k+2\right) P_{2}
$$

Proof: $\sum_{j \leq 3 l} C_{j}=\frac{3}{2} l(l+1) P_{2}+l(3 l+2) P_{1}$,
$\sum_{j>3 l} C_{j}=\sum_{u=3 l+1}^{3 k+2}\left[u P_{1}+(3 l+1) P_{2}-3 l P_{1}\right]$
$=(3 k-3 l+2)\left[\frac{3}{2}(k-l+1) P_{1}+(3 l+1) P_{2}\right]$,
then $\sum C_{j}=\sum_{j \leq 3 l} C_{j}+\sum_{j>3 l} C_{j}$.
Theorem 5 Let $l<k$, when l satisfy
$\left(\frac{3}{2} k^{2}-9 k l+\frac{15}{2} l^{2}\right)\left(P_{2}-P_{1}\right)+\left(\frac{11}{2} l-\frac{5}{2} k\right) P_{1}+\left(\frac{3}{2} k-\frac{9}{2} l\right) P_{2}>0$
The total flow-time of the schedule
$S_{3}=T_{1}(3) T_{4}(3) \cdots T_{3 l-2}(3) I_{3 l+1}[(3 k+2)-3 l]$ is lesser than the schedule $S_{*}=T(3) T(3) \cdots T(3) Q(5)$.

Proof:From lemma 1 and lemma 4, the difference between the total flow-time of the schedule S_{*} and S_{2} is
$\sum_{S_{*}} C_{j}-\sum_{S_{3}} C_{j}=\left[\left(\frac{3}{2} k^{2}-9 k l+\frac{15}{2} l^{2}\right)\left(P_{2}-P_{1}\right)+\left(\frac{11}{2} l-\frac{5}{2} k\right) P_{1}+\left(\frac{3}{2} k-\frac{9}{2} l\right) P_{2}\right.$
There is the conclusion of theorem 5 .

III. EXAMPLES

Example 1
$n=18, P_{1}=22, P_{2}=21, k=\frac{n}{3}=6, v=\frac{6}{5}+\frac{41}{15}=\frac{59}{15}$.
The total flow-time of the schedule

$$
S_{*}=T_{1}(3) T_{4}(3) T_{7}(3) T_{10}(3) T_{13}(3) T_{16}(3)
$$

is
$\sum C_{j}=3963$.Let $l=4$, the total flow-time of the schedule

$$
S_{1}^{\prime}=T_{1}(3) T_{4}(3) T_{7}(3) T_{10}(3) I_{13}(6) \quad \text { is } \quad \sum C_{j}=3962
$$

among S_{1}^{\prime} there is idle time 9 units in M_{1} after completion of the processing job 12 . Let $l=5$, the total flow-time of the schedule $S_{1}^{\prime \prime}=T_{1}(3) T_{4}(3) T_{7}(3) T_{10}(3) T_{13}(3) I_{16}(3) \quad$ is $\sum C_{j}=3955$, among $S_{1}^{\prime \prime}$ there is idle time 6 units in M_{1} after completion of the processing job 15 .

Example 2

$$
n=19, P_{1}=22, P_{2}=21, k=\frac{n-1}{3}=6, v=\frac{8}{3} .
$$

The total flow-time of the schedule $S_{*}=T_{1}(4) T_{5}(3) T_{8}(3) T_{11}(3) T_{14}(3) T_{17}(3)$
$\sum C_{j}=4397$.Let $l=3$, the total flow-time of the schedule

$$
S_{2}^{\prime}=T_{1}(4) T_{5}(3) T_{8}(3) T_{11}(3) I_{14}(6) \quad \text { is } \quad \sum C_{j}=4392,
$$

among $S_{2}{ }^{\prime}$ there is idle time 8 units in M_{1} after completion of the processing job 13 . Let $l=4$, the total flow-time of the schedule

$$
\begin{equation*}
S_{2}^{\prime \prime}=T_{1}(4) T_{5}(3) T_{8}(3) T_{11}(3) T_{14}(3) I_{17}(3) \tag{is}
\end{equation*}
$$

$\sum C_{j}=4387$, among $S_{2}{ }^{\prime \prime}$ there is idle time 5 units in M_{1} after completion of the processing job 15 .

REFERENCES

[1] Lawer,E.L.et al,Sequencing and Scheduling: A lgorithms and Complexity, S .G.Graves et al,Eds.,Handbooks in OR \& MS, Vol4, 1993,445-522.
[2] J.O.Achugbue,F.Y.Chin,Scheduling the open-shop to minimize mean flow time. SIAM J.Comput.11,1982,709-720.
[3] M.Dror, Open shop scheduling with machine depedent processing times,Discrete Applied Mathematics,39,1992,197-205.
[4] Siming Xiang,Guochun Tang,Open-Shop Scheduling Problem with Machine Depedent Processing Times ,OR Transactions,1998,2(1),71—78..
[5] Wenci Yu,Gang Ying,On the Total Flow-Time Problem of Two Machine Open-Shop ,OR Transactions,1998,2(2),84-94

