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Abstract. Noise control of signals is a key challenge problem in signal enhancement, signal 
recognition, communication, radar, and sonar applications. The most widely used method is 
adaptive linear filtering method, which can adaptive change filter parameters with the stochastic 
property of the stationary Gaussian noise. The representative algorithms of this include least mean 
square (LMS) adaptive filter and recursive least squares (RLS) adaptive filter. The conventional 
adaptive filtering algorithms suffer from severe degradation in impulsive noise environments. 
Although the fractional lower-order statistics (FLOS) based adaptive methods are robust to the 
impulsive noise, the complexity of these algorithms is a main problem in real world implementation. 
In this paper, two adaptive algorithms for impulsive noise reduction are proposed. The proposed 
methods have the capability of steady-state in the presence of impulsive noise. Simulation results 
illustrate an improvement in terms of convergence and steady-state performance. 

Introduction 
We live in a natural environment where noise is inevitable and ubiquitous, the signals are 

generally contaminated by acoustic background noise. As a result, noise reduction algorithms and 
systems for signal enhancement have received considerable interest in the past, primarily because 
the reduced signal intelligibility under noisy conditions is one of the major complaints in signal 
processing applications [1]. Therefore, noise reduction has been in great demand for an increasing 
number of audio applications, communications systems, and so on. 

The noise control process, which is often referred to as rather noise reduction or signal 
enhancement, can be achieved in many different ways, such as beamforming, adaptive filtering, 
temporal filtering, spatial-temporal filtering, etc [2], [3]. Two technique dominate the adaptive filter 
arena, namely, the least mean square (LMS) algorithm, and the recursive least squares (RLS) 
algorithm. It is well known that under the independence assumptions, the LMS algorithm 
convergences in the mean, and RLS algorithm convergences in the mean squares sense to the 
Wiener optimal filter [4], [5]. The LMS is known to track remarkably well the variations of a slowly 
time-varying model [3]. In many applications, LMS adaptive filtering algorithms are widely used, 
partly because they require less calculation and are simple to implement. It can also be delineated in 
the frequency domain, resulting in various derivative techniques [6]. However, it is 
slow-converging as initialization or the impulse response estimation phase. In general, the RLS 
algorithm converges relatively fast but is computationally extremely complex compared to the LMS 
approach. On the other hand, it has been shown that the RLS exhibits unstable behavior leading to 
divergence. To overcome the problem, some algorithms have been developed. The divergent 
behavior of the RLS has been attributed to round-off errors. The effects of round-off errors have 
been analyzed in [7]. One solution to this problem is to use different techniques during initialization 
and the steady state, use the LMS during the steady state, and the RLS during the initialization. 

Most noise reduction algorithms work well for stationary or slowly varying noise, but less so for 
heavily non-stationary noise. Without specific knowledge about the noise, it can be difficult to the 
signal from the noise for these methods. The conventional LMS and RLS algorithms assume that 

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) 

© 2015. The authors - Published by Atlantis Press 1007



 

the environmental noise is Gaussian noise. However, the assumption of Gaussian noise is often 
unrealistic. Studies have shown that an important class of noise as underwater acoustic noise, 
atmospheric noise, multiuser interference, and radar clutters in real world applications are 
non-Gaussian processes [8], [9]. It has been shown that a class of α –stable distribution is more 
appropriate for modeling impulsive noise than Gaussian noise [10]. In order to robust against the 
impulsive noise, some fractional lower-order statistics (FLOS) based adaptive algorithms were 
developed in [11]-[14]. Although the FLOS based methods are robust to the impulsive noise, the 
computation of these methods is too complex to implement.    

In this paper, we analyze the performance of the conventional adaptive algorithms in the 
presence of stable distribution impulsive noise. Then we propose two adaptive noise reduction 
method based on the fractional lower-order statistics. Simulation results show the robustness and 
effectiveness of the proposed algorithms. 

Problem Formulation 
The noise control problem considered in this paper is to recover a signal of x(k) from the 

received signal y(k) which is corrupted by the noise, 
( ) ( ) ( )y k x k n k= +                                                            (1) 

where n(k) is the additive symmetric α -stable (SαS) noise. An univariate symmetric α -stable 
(SαS) probability density function (PDF) is best defined via the inverse Fourier transform integral 
[13], which is completely characterized by the three parameters, characteristic exponent α  
( α−∞ < < ∞ ), dispersion γ ( 0γ > ), and location a ( a−∞ < < ∞ ). The characteristic exponent 
α relates directly to the heaviness of the tails of the stable distribution. The smaller the 
characteristic exponent is, the heavier the tails of the distribution. The value where =1α  
corresponds to a Cauchy case, the value =2α  corresponds to a Gaussian case. 

The important difference between Gaussian and non-Gaussian SαS distribution is that the 
moments of SαS distribution is finite only for pth-order (p<α) moments. Since only the pth-order 
(p<α) moments are finite for the stable distribution variables, the fractional lower-order statistics 
(FLOS) have become one of the significant signal processing techniques in impulsive noise 
environments. For two SαS random variables ζ and η, the pth-order fractional correlation is 
defined as 

1, ( )p
p Eς η ςη〈 − 〉〈 〉 =                                                           (2) 

where 1 zppz z −〈 〉 = , and the sign( )⋅  function is defined by  

1, 0
( ) 0, 0

1, 0

z
sign z z

z

>
= =
− <

                                                          (3) 

Impulsive Noise Control Algorithms based on the Fractional Lower-order Statistics  
The least-mean-square (LMS) algorithm is widely used in adaptive signal processing for its 

robustness and simplicity. It is known for its simplicity and its good steady-state performance in 
stationary context [12]. An adaptive filtering algorithm adjusts the filter tap weight ( )kw  at each 
time instant according to the measured value of ( )e k . The standard LMS algorithm updates as [10]  

( 1) ( ) ( ) ( )k k e k kµ+ = +w w x                                                    (4) 
where µ  is defined as the step-size parameter which affects the convergence property of the filter 
weights, and ( ) ( ) ( )e k d k y k= −  is the estimation error between the desired signal ( )d k  and the 
received signal ( )y k .  

In theory the cost function of LMS algorithm is 
2( ) ( ( ))k E e kη =                                                              (5) 

1008



 

The filter parameters convergent to the optimal condition, 

( )
min ( ) ( ) ( )T

w k
k e k e kη =                                                          (6) 

The RLS algorithm is one of the most important adaptive filter algorithms due to its fast 
convergence rate in non-stationary environment, insensitivity to the eigenvalue spread of the input 
correlation matrix. The modular structure of it provides fast implementations. Therefore, it is 
desirable to have RLS-type algorithms that are roust in impulsive noise. The cost function of RLS 
algorithm is 

2

1
( ) ( )

k
k i

i
k e iς λ −

=

=∑                                                            (7) 

where ( ) ( 1) ( 1) ( )Tk d k x k W kλ = + − + , ( )W k  is the weight vector of the RLS. The filter 
parameters convergent to the optimal condition,  

( )
min ( ) ( ) ( ) ( )T

W k
k e k k e kς = Λ                                                      (8) 

where 1( ) ( , , ,1)kk Diag λ λ−= ⋅⋅⋅Λ , and ( ) ( ) ( ) ( 1)Te k d k x k W k= − − . 
It has been well established the performance of the conventional adaptive algorithm (iterms of the 

speed and convergence performance) change with a change in the characteristics [3]. It follows 
from equation (5) and (7) that the LMS and RLS algorithms will convergent to the steady state, 
when parameters convergent to the optimal conditions (6) and (8). However, when the noise in the 
received signal contain impulsive noise components, the variance of ( )e k  will become unbound, 

{ ( ) ( )}TE e k e k →∞ . Especially, the mean of ( )e k  will also infinite ( { ( )}E e k →∞ ), when the 
characteristic exponent is 0 1α< < . In this case, the LMS and RLS algorithms cannot convergent 
to the steady state, thus, they are useless in the presence of impulsive noise.  

The performance of the LMS and RLS algorithms in Gaussian noise and impulsive noise are 
shown in Figure 1 and Figure 2, respectively. The signal is a single frequency sine signal and the 
signal to noise ratio is 3 dB, the characteristic exponent of the impulsive noise is 1.8α = . It can be 
seen from Figure 1 and Figure 2 that the LMS and RLS algorithms can reduce the influence of the 
Gaussian noise, however, they cannot circumvent the impulsive noise. 
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(a) The LMS algorithm         (b) The RLS algorithm       

Fig.1. The convergence of LMS and RLS algorithms in Gaussian noise. 
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(a) The LMS algorithm         (b) The RLS algorithm       

Fig.2. The convergence of LMS and RLS algorithms in impulsive noise. 
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The work [9] introduces the fractional lower-order statistics is an effective technique to robust 
against the stable distribution noise. Although several robust adaptive algorithms have been 
proposed, they are difficult to implementation with real world applications. Therefore, it is 
necessary to develop new robust algorithms that are not only robust to the impulsive noise, but also 
easy to apply in real world. Here, we first define two new cost functions for the LMS and RLS 
algorithms. The new cost function of LMS algorithm is defined as 

( ) [( ( )) ( )],  p T pk E e k e k pη α〈 〉 〈 〉′ = <                                               (9) 
The weight vectors updates as 

( ( )) ( )( 1) ( )
( ( )) ( )

p

p T p

e k kk k
k k

µ 〈 〉

〈 〉 〈 〉+ = +
xw w

x x
                                             (10) 

where µ  is the step-size parameter which affects the convergence behavior of the filter weights. 
The new cost function of RLS algorithm is defined as 

1
( ) ( ( )) ( )),  

k
k i p T p

i
k e i e i pς λ α− 〈 〉 〈 〉

=

′ = <∑                                            (11) 

The weight vector is given by 
( ) ( 1) ( )[ ( ) ( ) ( 1)]TW k W k g k d k x k W k= − + − −                                      (12) 

where ( ) ( 1)( ( )) / ( ( ))pg k C k x k kλ µ〈 〉= − + , and ( )C k  and ( )kµ  are recursively computed from,  
1( ) [ ( 1) ( )( ( )) ( 1)]p TC k C k g k x k C kλ− 〈 〉= − − −                                      (13) 

( ) ( ( )) ( 1) ( )p T pk x k C k x kµ 〈 〉 〈 〉= −                                                (14) 
where 1(0)C Iδ −=  ( 0δ > ).  

Although ( )n k  contains impulsive components, the ( )e k  becomes to a second-order moment 
process by using nonlinear operation. Thus, the performance of the adaptive algorithms with 
impulsive noise will be much better than the conventional methods. Furthermore, the complexity of 
the proposed FLOS based LMS and RLS algorithms is similar to the conventional algorithms, 
except for the nonlinear operation ( ( )) pe k 〈 〉 . 

Simulation Results 
In this section, we apply the proposed algorithms to noise control in communications signals 

processing applications. The signal of interest (SOI) is an AM signal with carrier frequency of 
0.1c sf f= , bandwidth of 0.04 sB f= . We use generalized signal-to-noise ratio (GSNR) as the ratio 

of the signal power over the impulsive noise dispersion, 
2

1

1GSNR 10lg[ ( ) ]
N

s k
Nγ

= ∑                                                   (15) 

The step-size parameter of the FLOS based LMS is 0.01µ = , the λ  of the FLOS based RLS is 
0.99. 

The power spectra of the AM signal and the noisy signal which includes AM signal and 
impulsive noise are shown in Figure 3. Figure 4 shows the power spectra of the signals processed 
by the proposed FLOS based LMS and RLS algorithms in impulsive noises. Figure 5 shows the 
convergence process of the proposed LMS and RLS algorithms. The characteristic exponent of the 
impulsive noise is 1.8α = , the GSNR  is 3dB.  

It is easy to see from Figure 3 that the AM signal is completely corrupted by the impulsive noise. 
However, it can be seen from Figure 4 that the proposed LMS and RLS can reduce the impulsive 
noise. We note also that the FLOS based LMS reveals a similar suppression capability compared to 
the FLOS based RLS method. Although both the proposed LMS and RLS algorithms can 
convergent to the steady state, but from Figure 5 we can see that the FLOS based RLS convergence 
faster than the FLOS based LMS. 
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       (a) The AM signal         (b) AM signal with impulsive noise       

Fig.3. The power density of the signals 
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(a) Proposed LMS algorithm         (b) proposed RLS algorithm      

Fig.4. The power density of the signals after noise reduction 
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(a) Proposed LMS algorithm         (b) proposed RLS algorithm      

Fig.5. The convergence of proposed FLOS based LMS and RLS algorithms in impulsive noise 

Conclusion 
In this paper, we analyze the adaptive impulsive noise reduction methods. It is shown that the 

conventional LMS and RLS algorithms are not robust to impulsive noise, two new FLOS based 
adaptive algorithms are proposed. The proposed algorithms are not only robust to the alpha stable 
impulsive noise, but also easier to implement than the conventional FLOS based methods. 
Simulation results illustrate the robustness and effectiveness of the proposed methods against the 
impulsive noise. 
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