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Abstract. An analytical solution based on slab method is first proposed to calculate the rolling force 
and rolling torque in asymmetrical sheet rolling where the work roll radii, their speeds, and the 
interfacial frictions may be different. In the solution, the shear stress acting along the vertical sides of 
each slab is taken into account. To verify the validity of the proposed analytical solution, the 
analytical rolling force and torque were compared with experimental and analytical results of other 
investigators. Very good agreements are found. By this proposed analytical solution, it is noted that 
the calculation time and computer expense are saved, and the characteristics of asymmetrical cold and 
hot sheet rolling are obtained easily and rapidly.  

Introduction 

Asymmetrical sheet rolling processes, for which the peripheral velocity or radius of the upper roll 
may be different from those of the lower roll, have become more and more important, in light of the 
fact that it can gain such advantages as lower rolling pressure distribution, resulting in less rolling 
force. Sachs and Klinger (1947) seem to be the early investigators in this area who concentrated on the 
mechanics of single roll driven mills [1]. They realized that there exists a region identified as the 
region of cross shear where the frictional forces on the driven and undriven rolls act on the strip in 
opposite directions and the developed curvature at exit is due to this region. Pan and Sansome (1982) 
carried out some experiments on asymmetric rolling, in which asymmetry was created due to speed 
mismatch. In progressive analytical studies, Hwang and Tzou (1997) attempted to analyze the 
asymmetrical rolling process [3]. In their models, only uniform normal stress in the absence of any 
shear stress was assumed to act on the vertical sides of each slab, and the effect of frictional shear 
stresses in deriving the yield criterion was neglected. Salimi and Kadkhodaei (2004) used a new stress 
field in which non-uniform normal and shear stresses on the vertical sides of each slab were 
considered, and frictional shear stresses in evaluating the yield criteria were taken into account [4]. In 
their investigation, they stumbled on that the sheet may tilt at entry if it is fed freely. Consequently to 
have horizontal entry of the sheet, it is needed to impose extra techniques that warranted horizontal 
entry of the sheet into the roll gap. Kadkhoadei et al. (2007) used a genetic algorithm to calculate 
deflection and the angle of rotation in the ingoing sheet [5]. These models were able to evaluate the 
rolling force and torque. Gudur et al. (2008) [6] improved Salimi and Kadkhodaei [7] approach by 
incorporating strain-hardening effects to estimate friction in asymmetrical sheet rolling with no force 
and moment at entry by calculating the strip curvature at exit. Qwamizade et al. (2011) evaluated the 
developed curvature during asymmetrical sheet rolling in which quadratic shear stress and linear 
normal stress distributions were assumed to act on the vertical sides of the slab [8]. 

Most of the above mentioned researches, except for the analytical solution obtained by Hwang [3] 
in which the shear stress on the vertical sides of each slab was not considered and the maximum error 
may reach up to 15% for the rolling pressure, on the rolling pressure distribution, rolling force, rolling 
torque, as well as the strip curvature at exit, were numerical. Using numerical method such as the 
Runge-Kutta method to solve the governing equations in the analysis of asymmetrical rolling is 
time-consuming and inconvenient. A large number of divided intervals are needed to get accurate 
solutions. Thus, obtaining an analytical solution which accounts for the shear stress on the vertical 
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sides of each slab and can accurately predict the rolling force and torque is still necessary, and that is 
the main objective of this paper. 

Up to now, recent researches either focus on the numerical solutions taking the shear stress on the 
vertical sides of each slab into account or stay in the analytical solutions neglecting the shear stress. In 
the present work, an analytical solution based on the slab method for asymmetrical cold rolling is first 
proposed, in which the shear stresses on the vertical sides of each slab have been incorporated in 
deriving the yield criterion. What's more, effects of the roll speed ratio, the friction factor, and the 
friction factor ratio, on the rolling pressure distribution, rolling force and rolling torque are discussed 
systematically. 

Mathematical Model 

In the development of the mathematic model to be presented, the following assumptions are made:  

(1) The work rolls are assumed to be rigid and the sheet to be rigid perfectly plastic with no 
strain-hardening effect. (2) The plastic deformation is plane strain and no material spread in 
transverse direction is taken into account. (3) The normal stress on the vertical sides of each slab is 
uniform and the interfacial shear stresses uτ  and lτ  at the upper and the lower interfaces are constant 
and follow Tresca’s law, i.e. u um kτ = , l lm kτ = . (4) All the shear stresses on the vertical side of the 
element in the three distinct zones will reach their maximum values mkτ =  at the upper and lower 
surfaces. However, their distributions are different for the three distinct zones. In zones I (backward 
slip zone) and III (forward slip zone) the shear stresses will obtain its minimum values of zero at the 
center, and the shear stresses from the upper and lower surfaces to their center are linearly distributed. 
But, in zone II (cross shear zone) the shear stresses from the upper surface to the lower surface are 
linearly distributed and the shear stress at the center is equal to that of the mean value of its surfaces. 
(5) The flow directions of the sheet at the entrance and exit of the roll gap are both horizontal. So, no 
curvature calculation is possible. (6) The total roll contact arc is comparatively smaller than the 
circumference of the rolls. 

 

Fig. 1 shows the schematic diagram of the asymmetric rolling process. The inlet and outlet 
thickness of the strip are denoted by ih  and oh , respectively. The subscripts u  and l  represent upper 
and lower interfaces, respectively. Thus, uR  and lR  denote the radii of the upper and lower rolls 
whereas uV  and lV  represent the speeds of the upper and the lower rolls. Without any loss of 
generality, assume that the speed of the lower roll is higher than that of the upper roll. In Fig. 1, the 
roll gap is divided into three zones. In zone I, the strip velocity is lower than that of both the rolls and 
the frictional stresses on the upper and the lower surfaces are in the forward direction. In zone II, the 
strip velocity is more than the speed of the upper roll and less than the speed of the lower roll. Hence, 
the frictional stresses on the upper surface act in the backward direction and that on the lower surface 
act in the forward direction. In zone III, as the speeds of the two work rolls are lower than the strip 
velocity, the frictional stresses at both of the surfaces are in the backward direction.  

    Fig. 1 Schematic illustration of the mathematical model 

 

 Fig. 2 Material element in region I  
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The stress state of a slab in zone I is illustrated in Fig. 2, in which the directions of the upper and 
lower friction forces are both forward, i.e., the velocities of the upper and lower rolls are both higher 
than that of the sheet. The horizontal position of the neutral point on the upper roll is not necessarily 
equal to that on the lower roll. Therefore, the direction of friction force from the upper roll exerted on 
the sheet is not necessarily the same as that from the lower roll. It is noted that in this present stress 
field in Fig. 2 the shear stress acted on the vertical side has been taken into account.  

If we consider the equilibriums of a small element with sides parallel to x and y axes at the upper 
left limit and lower left limit of the material elements in the three distinct zones, then the assumed 
shear stress distribution (including the values and signs of the shear stresses) on the vertical side can 
be displayed in Fig. 3. Accordingly, the average shear stresses in zones I, II, and III can be calculated 
as ( )1

4 u lm m kτ = − , ( )1
2 u lm m kτ = +  and ( )1

4 l um m kτ = − .  

 
Fig. 3 Assumed shear stress distribution in zone I, II and III 

Equilibrium Differential Equation. In Fig. 2, the normal stress is assumed to be distributed 
uniformly, i.e. x u lσ σ σ= = , and the average shear stress (τ ) is constant. As the contact length in 
comparison to the rolls radii is small we have:  

2 2 2, ,u l
o eq

eq u l eq

R Rx dh xh h R
R R R dx R

= + = =
+

                                                                                                         (1) 

where eqR  is the equivalent work roll radius.  
Without any loss of generality, we take the zone I as the analysis object firstly. For small reduction 

per pass tan u ux Rθ =  and tan l lx Rθ = , then the horizontal force equilibrium takes the form 

20 0x u l
x x e

eq u l

x p x p xF hd
R R R
σ

σ τ= ⇒ + + + − =∑ ; e u lτ τ τ= +                                                                             (2) 

where up  and lp  are the rolling pressures of the upper and lower rolls, respectively. 
Referring to Fig. 2, the mathematical expressions for vertical force equilibrium for zones I-III, for 

small bite angle is  

yu yl u u l l
u l

x xp p p
R R

σ σ τ τ= − = − = + = +                                                                                                      (3) 

where p  is the vertical stress at the roll gap.  
The flow rule and the plane strain condition at any point in the plastic region gives 

( )10,
2xz yz z x yτ τ σ σ σ= = = +                                                                                                                   (4) 

Substituting these relations into the Von-Mises yield criterion gives 
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2 2

2
x y

xyk
σ σ

τ
−

= −                                                                                                                              (5) 

Considering ( ) 2y yu yl pσ σ σ= + = −  as the average vertical stress in y direction and using the 
average shear stress τ  instead of xyτ  yields 

( ) ( )2 22 22 2 1 2 ;  1x p k k k n k n kτ τσ τ τ τ+ = − = − = = −                                                                     (6) 

where nτ  is defined as the shear stress factor which reflects the effect of average vertical shear 
stress on the mean yield shear stress.  

Taking notice of xd dpσ = −  and substituting Eqs. (3) and (6) into Eq. (2) and rearranging we obtain 

2
2 2

4u u
e

u l eq

n kdph x x
dx R R R

ττ τ
τ

 
= − + + − 

 
                                                                                                         (7) 

Integrating Eq. (7) with respect to x, the solution of the differential equation is obtained as 

( ) ( )2 *2 ln eq o
eq o

Bp Ax n k x R h x c
R hτ h= − + + + +                                                                                       (8) 

where ( )2 2 , , arctanu l
eq eq o eq e

u l eq o

xA R B R h A R x
R R R h
tt

t h
 

= + = − = 
 

, and *c  is a constant of integration. 

It should be noted that since the directions of friction stresses ( uτ  and lτ  in eτ ) have already been 
considered in Eq. (1), and taking notice of the definition of e u lτ τ τ= + , then the friction stress toward 
forward (or rightwards) should be positive, and vice versa. In zone I, the directions of the friction 
forces are forward, i.e., the sheet velocity is slower than those of the upper and lower rolls, 
accordingly the equivalent friction stress eτ  is u lm k m k+ . The form of the differential equation in III is 
the same as that in zone I, except that the effective friction stress eτ  is replaced by 

( )e u l u lm k m k m m kτ = − − = − + , because the directions of the friction forces are backward (or leftwards). 
In zone II, the friction forces are in reverse direction, thus ( )e u l l um k m k m m kτ = − + = −  for the case of 

l uV V> . 
Boundary Conditions. The velocity of the lower roll is assumed to be quicker than that of the 

upper roll. The neutral point of the upper roll is denoted by nux , and that the lower of roll by nlx . The 
boundary conditions for those three distinct zones can be expressed as follows: 

(i) Zone III ( ) ( )30 ,nl e u lx x m m kτ≤ ≤ = − + ， ( )3
1
4 u lm m kτ = − , ( )

3

21 16u ln m mτ
 = − −   

At 0x =  ( )or 0xη =    

 
30 02 xp n kτ σ= −    

where 0p  is the rolling pressure at the exit of the roll gap and 0xσ  is the front tension at the exit. 
From this boundary condition, integral constant *c  in Eq. (8) can be obtained as 

( )
3

*
3 02 1 ln eq o xc n k R hτ σ = − −                                                                                                                  (9) 
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where the subscript 3 in variables 3eτ , 3τ ，
3

nτ  and *
3c  denote the eτ , τ ， nτ   and  integral constant 

*c  in zone III. Hence, the rolling pressure ( )IIIp  in zone III can be expressed as 

( ) ( )
3

2 *3
III 3 0 3

0

2 ln eq
eq

Bp A x n k x R h x c
R hτ h= − + + + +                                                                                   (10) 

where 3 3 3 32 2 , .u l
eq eq o eq e

u l

m mA R k B R h A R
R R

τ
 

= − + = − 
 

  

(ii) Zone I ( ) ( )1 1 2,nu ex x L m m kτ≤ ≤ = + , ( )1
1
4 u lm m kτ = + , ( )

1

21 16u ln m mτ
 = − +   

At x L=  ( ) ( )or arctan eq oL L R hh =   

11 12 xp n kτ σ= −  

where 1p  is the rolling pressure at the entrance of the roll gap and 1xσ  is the back tension at the 
entrance. From this boundary condition, *

1c  can be expressed as 

( ) ( )
1 1

* 2
1 1 1

0

2 2 lnx eq o
eq

Bc n k A L n k L R h L
R hτ τσ h= − + − + −                                                                       (11) 

where 1 1 1 12 2 , ,u l
eq eq o eq e eq i

u l

m mA R k B R h A R L R h r
R R

τ
 

= + = − = 
 

. 

Therefore, the rolling pressure ( )Ip  is as follows 

( ) ( )
1

2 *1
I 1 12 ln eq o

eq o

Bp A x n k x R h x c
R hτ h= − + + + +                                                                                   (12) 

When the peripheral velocity of the upper roll ( )uV  is smaller than that of the lower roll ( )lV , the 
margin of x  in zone II is nl nux x x≤ ≤ , and ( )2 .e u l l um k m k m m kτ = − + = −  

(iii) Zone II ( ) ( )2,nl nu e l ux x x m m kτ≤ ≤ = − ， ( )2
1
2 u lm m kτ = + , ( )

2

21 4u ln m mτ
 = − +   

Due to the continuity of boundary conditions at nlx x= , the rolling pressure in zone III ( IIIp ) at 
nlx x=  has to be equal to that in zone II ( )IIp , i. e. III IIp p= . Accordingly, *

3c  and *
2c  have the 

relationship as 

( ) ( ) ( ) ( )
3 2

2 * 2 *3 2
3 3 2 22 ln 2 lnnl nl eq o nl nl nl eq o nl

eq o eq o

B BA x n k x R h x c A x n k x R h x c
R h R hτ τh h− + + + + = − + + + +          (13) 

Where 2 2 2 22 2 , .u l
eq eq o eq e

u l

m mA R k B R h A R
R R

τ
 

= − − = − 
 

 

Meanwhile, due to the continuity of boundary conditions at nux x= , i.e. I IIp p= , we can obtain 

  ( ) ( ) ( ) ( )
1

2 * 2 *1 2
1 1 2 2 22 ln 2 lnnu nu eq o nu nu nu eq o nu

eq o eq o

B BA x n k x R h x c A x n k x R h x c
R h R hτ τh h− + + + + = − + + + +       (14) 
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where ( ) arctan nu
nu

eq o

xx
R h

h = , ( ) arctan nl
nl

eq o

xx
R h

h = . 

From Eq. (13), *
2c  can be expressed as 

( ) ( ) ( ) ( )
3 2

* 2 *
2 2 3 32 lnnl nl nl eq oc A A x F x n n k x R h cτ τh= − + + − + +                                                                     (15) 

where ( )3 2 eq oF B B R h= − .  
and from Eq. (14), *

2c  can be determined as 

( ) ( ) ( ) ( )
1 2

* * 2 *
2 2 1 12 lnnu nu nu eq oc A A x E x n n k x R h cτ τh= − + + − + +                                                                    (16) 

where ( )1 2 eq oE B B R h= − . 
Substituting Eq. (16) into Eq. (15) then produces 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

3 2

* 2 *
2 1 1

2 *
2 3 3

2 ln

2 ln 0

nu nu nu eq o

nl nl nl eq o

A A x E x n n k x R h c

A A x F x n n k x R h c

τ τ

τ τ

h

h

− + + − + +

− − − − − + − =
                                                                  (17) 

From the volume constancy of the material, the positions of the upper and lower neutral points nux  
and nlx , have the following relationship as [3] 

( )2 1 o
nu A nl A

A

hx V x V
R

= + − ; 2
1, .

2
l

A A
u eq eq

oVV R
V R R

h= = −                                                                                     (18) 

Substituting Eq. (18) into Eq. (17), the solution of the neutral point nlx  can be easily found by the 
bisection numerical method. Once nlx  is known, nux  and *

2c  can be steadily obtained by Eqs. (18) and 
(15), respectively. The rolling pressure ( )IIp  in zone II can be determined as 

( ) ( )
2

2 *2
II 2 22 ln eq o

eq o

Bp A x n k x R h x c
R hτ h= − + + + +                                                                                   (19) 

The rolling pressure Ip , IIp , and IIIp  can be calculated from Eqs. (12), (19) and (10), respectively, 
when *

1c , *
2c  and *

3c  are known from Eqs. (11), (15) and (9), respectively. 

Rolling Force and Torque. Once the mean shear yield strength of the material and friction factor 
between the rolls and sheet are known, the rolling force can be found by integrating the normal rolling 
pressure over the arc length of contact. Thus the rolling force per unit width is given as 

I II IIIP P P P= + +                                                                                                                                         (20) 

where 

* *
III III 1 20

III IIInlx
P p dx= = +∫                                                                                                                           (21) 
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( ) ( ) ( )

( ) ( )

3 3 3

* 2 2 *3
1 3

22
3

III 2 ln 4 4
2

1 ln
2

nl nl nl eq o nl eq o nl

n
nl eq o nl

eq o

A x n kx x R h c n k x n k R h x

xB x R h x
R h

τ τ τ h

h

= − + + + − +

 
 + − +
  

 

( )* 3
2III ln

2 eq o
B R h=  

* *
II II 1 2II IInu

nl

x

x
P p dx= = +∫                                                                                                                            (22) 

( ) ( ) ( )

( ) ( )

2 2 2

* 2 2 *2
1 2

2
2

II 2 ln 4 4
2

1 ln
2

nu nu nu eq o nu eq o nu

nu
nu eq o nu

eq o

A x n kx x R h c n k x n k R h x

xB x R h x
R h

τ τ τ h

h

= − + + + − +

 
 + − +
  

 

( ) ( ) ( )

( ) ( )

2 2 2

* 2 2 *2
2 2

2
2

II 2 ln 4 4
2

1 ln
2

nl nl nl eq o nl eq o nl

nl
nl eq o nl

eq o

A x n kx x R h c n k x n k R h x

xB x R h x
R h

τ τ τ h

h

= − + − − −

 
 − − +
  

 

* *
I I 1 2I I

nu

L

x
P p dx= = +∫                                                                                                                                      (23) 

( ) ( ) ( ) ( )
1 1 1

* 2 2 * 21
1 1 1

1I 2 ln 4 4 ln
2 2eq o eq o eq o

eq o

A LL n kL L R h c n k L n k R h L B L R h L
R hτ τ τ h

 
 = − + + + − + + − +
  

   

( ) ( ) ( )

( ) ( )

1 1 1

* 2 2 *1
2 1

2
1

I 2 ln 4 4
2

1 ln
2

nu nu nu eq o nu eq o nu

nu
nu eq o nu

eq o

A x n kx x R h c n k x n k R h x

xB x R h x
R h

τ τ τ h

h

= − + − − −

 
 − − +
  

 

The rolling torques, uT  and lT , exerted by the sheet on the upper and lower rolls, respectively, can 
be calculated by integrating the moment of the shear friction force along the arc length of contact 
around the roll axis. Therefore 

( ) ( )
0

2nl nu

nl nu

x x L

u u u u u u u nux x
T R m kdx m kdx m kdx R m k L x= − − + = −∫ ∫ ∫                                                                     (24) 

( ) ( )
0

2nl nu

nl nu

x x L

l l l l l l l nlx x
T R m kdx m kdx m kdx R m k L x= − + + = −∫ ∫ ∫                                                                        (25) 
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and the total torque required is  

.u lT T T= +                                                                                                                                                    (26) 

Results and Discussion 

The present model is compared for the rolling force values with the analytical and experimental 
results of Hwang and Tzou [3] as well as numerical results obtained by Salimi et al. [8], shown in Fig. 
4. It shows that the results of the present model are in a better agreement with the experimental ones 
than those of Hwang model. It should be noted that although the present model is less accurate than 
the numerical model by Salimi et al., the present model is an analytical solution which can easily and 
quickly predict the characteristics in asymmetrical rolling and can save computational cost. What’s 
more, the rolling forces for the three models all increase as the percentage reductions increase.  

 
Fig. 4 Comparison of rolling force predicted by the present model with other researchers’ results for (a) 

( 105u lR R= = mm; 3.2ih = mm; 0.494u lm m= = ; 1.1AV = ; 98.1k = Ma ), (b) ( 50uR = mm; 105lR = mm; 2ih = mm; 
0.359u lm m= = ; 1.05AV = ; 98.1k = Ma ) 

Fig. 5(a) shows the effect of roll speed ratio AV  on the specific rolling force. The results of the 
rolling force models by Hwang and Tzou [3] and Salimi and Kadkhodaei [4] are also shown in this 
figure. It shows that all the rolling forces decrease as the roll speed ratio increases. Both the 
relationship between the rolling force and speed mismatch is quadratic curve for the present model 
and Hwang’s model. Besides, the present result is much closer to that of Salimi model than by Hwang 
model.  

 
Fig.5 Effect of roll speed ratio on (a) specific rolling force and (b) specific rolling torque  

Fig. 5(b) shows the effect of speed ratio on the specific rolling torque. The results of the rolling 
torque obtained by Hwang and Tzou [3] and Salimi et al. [8] models are also shown in this figure. As 
the speed ratio increases during asymmetrical rolling process, the location of neutral point of the 
upper roll increases whereas that of the lower roll decreases. As a result, the rolling torque of the 

(a) (b) 

(a) (b) 
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lower roll increases while that of the upper roll decreases. Even putridly, the slower roll will be driven 
by the faster roll and the rolling torque of the slower roll will be negative. Anyway, the total torque 
calculated by the present model coincides with those of Hwang and Salimi models. They all decrease 
as the roll speed ratio increases. 

Fig. 6(a) illustrates the specific rolling pressure along the contact length with various friction 
factors m. As the m increases, the rolling pressure distribution increases and the cross shear region 
becomes narrow slightly. Besides, as the m increases both the neutral points nux  and nlx  move toward 
the entrance. Furthermore, sudden changes in the gradient at the location of the two neutral points are 
due to sudden change in the direction of surface shear stresses at each neutral point. 

 
Fig. 6 Variation of specific rolling pressure with (a) various friction factors and (b) various friction factor ratios 

Fig. 6(b) shows the variation of rolling pressure with various friction factor ratios l um m  ( um  is 
fixed). Obviously, the whole rolling pressure increases with the increase of l um m , and the position of 
neutral points moves toward the entrance of the roll gap as l um m  increases. The rolling pressure at 
the neutral point of the upper roll ( )nux  is smaller than at the neutral point of the lower roll ( )nlx  in the 
case of 1.5l um m = , whereas the rolling pressures at nux  are bigger when 1l um m =  and 0.8.  

Fig. 7 shows the effect of input thickness on the rolling force and torque for various speed ratios.  It 
can be seen that, thicker sheets need more rolling force and torque.  

 
Fig.7 Effect of inlet thickness upon specific rolling force and torque in asymmetrical rolling  

Fig. 8 shows the effect of the ratio of work roll radii upon rolling force and torque where the work 
roll angular speeds are equal. It is seen that by increasing the ratio of work roll radii, the specific 
rolling force decreases while the specific rolling torque increases.  

(b) (a) 
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Fig.8 Variations of specific rolling force and torque for equal work roll angular velocities  

Fig. 9 shows the specific rolling force and torque with respect to the friction factor ratio. The upper 
friction factor is assumed to be 0.5, and the lower one is varied from 0.5 to 1. Therefore, the 
asymmetry arises from both speed mismatch and different frictional factors. It is seen that both the 
specific rolling force and rolling torque increases as the friction factor ratio increases.  

 
Fig.9 Effect of friction factor ratio on the specific rolling force and torque  

Conclusions 

(1) Based on the slab method of analysis, an analytical solution of rolling force and rolling torque 
considering the shear stresses on the vertical side is first proposed. Comparison of the rolling force 
and rolling torque obtained from the present model with available data shows a good agreement, and 
both the specific rolling force and torque decrease as the roll speed ratio increases.  

(2) As the m increases, the rolling pressure increases. The position of neutral points moves toward 
entrance of the roll gap as the l um m  increases.  

(3)Both the rolling force and torque increase with the increase of the plate thickness and the friction 
factor ratio increases. 

(4) The specific rolling force decreases as the ratio of work roll radii increases whereas the trend of 
the specific rolling torque are reverse.  

(5) The present analytical model can easily and quickly predict the characteristics in asymmetrical 
rolling and is suitable for online control applications. 
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