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Abstract. In this paper, we investigate the problem to compute the largest number of red nodes in 
red-black trees in red-black trees. We first present a dynamic programming solution for 
computing )(nr , the largest number of red internal nodes in a red-black tree on n  keys in 

)log( 2 nnO  time. Then the algorithm is improved to a new )(nO  time algorithm. Based on the 
structure of the solution we finally present a linear time recursive algorithm using only )log( nO  
space.  

Introduction 
Red-black tree was invented in 1972 by Rudolf Bayer[2]. Guibas and Sedgewick named it 

red-black tree in 1978[4]. In their paper they studied the properties of red-black trees at length and 
introduced the red/black color convention. Andersson [1] gives a simpler-to-code variant of 
red-black trees. Weiss [7] calls this variant AA-trees. An AA-tree is similar to a red-black tree 
except that left children may never be red. In 2008, Sedgewick introduced a simpler version of the 
red-black tree called the left-leaning red-black tree[5] by eliminating a previously unspecified 
degree of freedom in the implementation. Red-black trees can be made isometric to either 2-3 trees 
or 2-4 trees,[5] for any sequence of operations. 

The number of black nodes on any simple path from, but not including, a node x  down to a leaf 
is called the black-height of the node, denoted )(xbh . By the property (5), the notion of 
black-height is well defined, since all descending simple paths from the node have the same number 
of black nodes. The black-height of a red-black tree is defined to be the black-height of its root. 

We are interested in the number of red nodes in red-black trees in this paper. We will investigate 
the problem that in a red-black tree on n  keys, what is the largest possible ratio of red internal 
nodes to black internal nodes, and what is the smallest possible ratio. 

Dynamic Programming Algorithm 
Let T  be a red-black tree on n  keys. The largest and the smallest number of red internal 

nodes in a red-black tree on n  keys can be denoted as )(nr  and )(ns  respectively. The values 
of )(nr  and )(ns  can be easily observed for the special case of 12= −kn   . In the general 
cases, we denote the largest number of red internal nodes in a subtree of size i  and black-height 
j  to be ,0),( jia  when its root red and ,1),( jia  when its root black respectively. Since in a 

red-black tree on n  keys we have 
njn log2log

2
1

≤≤
, we have, 

),,(max=),(
log2log

2
1

kjnakn
njn ≤≤

g                  (1) 

Furthermore, for any ijini log2log
2
1,1 ≤≤≤≤

,  we can denote,  
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Theorem 1  
For each 

ijini log2log
2
1,1 ≤≤≤≤

, the values of ,0),( jia  and ,1),( jia  can be computed 

by the following dynamic programming formula.  
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Proof. 
For each 

ijini log2log
2
1,1 ≤≤≤≤

, let ,0),( jiT  be a red-black tree on i  keys and 

black-height j  with the largest number of red internal nodes, when its root red. ,1),( jiT  can be 
defined similarly when its root black. The red internal nodes of ,0),( jiT  and ,1),( jiT  must be 

,0),( jia  and ,1),( jia  respectively. 
(1) We first look at ,0),( jiT . Since its root is red, its two sons must be black, and thus the 

black-height of the corresponding subtrees L  and R  must be both 1−j . For each /20 it ≤≤ , 
subtrees 1,1),( −jtT  and 1,1)1,( −−− jtiT  connected to a red node will be a red-black tree on 
i  keys and black-height j . Its number of red internal nodes must be 

1,1)1,(1,1),(1 −−−+−+ jtiajta . In such trees, ,0),( jiT  achieves the maximal number of red 
internal nodes. Therefore, we have,   

1,1)}1,(1,1),({1max,0),(
/20

−−−+−+≥
≤≤

jtiajtajia
it

       (4) 

On the other hand, we can assume the sizes of subtrees L  and R  are t  and 1−− ti , 
/20 it ≤≤ , WLOG. If we denote the number of red internal nodes in L  and R  to be )(Lr  and 

)(Rr , then we have that 1,1),()( −≤ jtaLr  and 1,1)1,()( −−−≤ jtiaRr . Thus we have,   
1,1)}1,(1,1),({max1,0),(

/20
−−−+−+≤

≤≤
jtiajtajia

it
  (5) 

Combining  (4) and  (5) , we obtain,    
1,1)}1,(1,1),({max1=,0),(

/20
−−−+−+

≤≤
jtiajtajia

it
      (6) 

(2) We now look at ,1),( jiT . Since its root is black, there can be 4 cases of its two sons such as 
red and red, black and black, black and red or red and black. If the subtree L  or R  has a red root, 
then the black-height of the corresponding subtree must be j , otherwise, if its root is black, then 
the black-height of the subtree must be 1−j . 

In the first case, both of the subtrees L  and R  have a black root. For each /20 it ≤≤ , 
subtrees 1,1),( −jtT  and 1,1)1,( −−− jtiT  connected to a black node will be a red-black tree on 
i  keys and black-height j . Its number of red internal nodes must be 

1,1)1,(1,1),( −−−+− jtiajta . In such trees, ,1),( jiT  achieves the maximal number of red internal 
nodes. Therefore, we have,   
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For the other three cases, we can conclude similarly that 
),(=,0)}1,(,0),({max,1),( 2

/20
jijtiajtajia

it
a−−+≥

≤≤

        (8) 

),(=,0)}1,(1,1),({max,1),( 3
/20

jijtiajtajia
it

a−−+−≥
≤≤

    (9) 

),(=1,1)}1,(,0),({max,1),( 4
/20

jijtiajtajia
it

a−−−+≥
≤≤

    (10) 

Therefore, we have,   
)},(),,(),,(),,({max,1),( 4321 jijijijijia aaaa≥         (11) 

On the other hand, we can assume the sizes of subtrees L  and R  are t  and 1−− ti , 
/20 it ≤≤ , WLOG. In the first case, if we denote the number of red internal nodes in L  and R  to 

be )(Lr  and )(Rr , then we have that 1,1),()( −≤ jtaLr  and 1,1)1,()( −−−≤ jtiaRr ,  and 
thus we have,   

),(=1,1)}1,(1,1),({max,1),( 1
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jijtiajtajia
it

a−−−+−≤
≤≤

      (12) 

For the other three cases, we can conclude similarly that 
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             (13) 
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            (14) 

),(=1,1)}1,(,0),({max,1),( 4
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jijtiajtajia
it
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            (15) 

Therefore, we have,  
)},(),,(),,(),,({max,1),( 4321 jijijijijia aaaa≤                  (16) 

Combining  (11) and  (16) , we obtain,   
)},(),,(),,(),,({max=,1),( 4321 jijijijijia aaaa                   (17) 

The proof is complete. ■ 
According to Theorem 1, our algorithm for computing ),,( kjia  is a standard 2-dimensional 

dynamic programming algorithm.  

Improvement of the Algorithm 

We have computed )(nr  and the corresponding red-black trees using Algorithm 1. Some 
pictures of the computed red-black trees with largest number of red nodes are listed. From these 
pictures of the red-black trees with largest number of red nodes in various size, we can observe 
some properties of )(nr  and the corresponding red-black trees as follows. 

(1) The red-black tree on n  keys with )(nr  red nodes can be realized in a complete binary 
search tree, called a maximal red-black tree. 

(2) In a maximal red-black tree, the colors of the nodes on the left spine are alternatively red, 
black,  , from the bottom to the top, and thus the black-height of the red-black tree must be 

nlog
2
1 . 

(3) In a maximal red-black tree of k  levels, if all of the nodes of the last two levels ( 1, −kk ) 
and all of the black nodes of the last third level ( 2−k ) are removed, the remaining tree is also a 
maximal red-black tree. 

From these observations, we can improve the dynamic programming formula of Theorem 1 
further. The first improvement can be made by the observation (2). Since the black-height of the 
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maximal red-black tree on i  keys must be ilog
2
1 , the loop bodies of the Algorithm 1 for j  can 

be restricted to ij log
2
1=  to ilog

2
11+ , and thus the time complexity of the dynamic 

programming algorithm can be reduced immediately to )( 2nO . By the observation (3), the time 
complexity of the algorithm can be reduced substantially as follows. 

 
Theorem 2  
Let n  be the number of keys in a red-black tree, and )(nr  be the largest number of red nodes 

in a red-black tree on n  keys. The values of )(nr  can be computed by the following recursive 
formula. 

  









≥+
−
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where  









++−−−
−+−+

−

−

11)/42(22=
11)/42(2=

log1log

log2log

nn

nn

nnq
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            (20) 

Proof. 
Let T  be a maximal red-black tree of size n . It is obvious that T  has + nk log1=  levels. 
(1) The formula can be verified directly for the case of 8<n . 
(2) In the case of 8≥n , we have 3>k . The number of nodes in the last level of T  must 

be 12= log +−  nns . These nodes are all red nodes of T . It is readily seen that every 4 red nodes in 
the last level correspond to 2 black nodes in level 1−k  of T . Thus the number of black nodes in 
level 1−k  must be +−  1)/42(2= log nnb . It follows that the number of red nodes in level 

1−k  of T  is bn −− 1log2 . Therefore, the number of red nodes in the last two levels of T  
is bs n −+ − 1log2 , which is exactly 11)/42(22= log1log ++−−− − nn nnq . 

Let T ′  be the subtree of T  by removing all of the nodes of the last two levels ( 1, −kk ) and all 
of the black nodes in level 2−k  from T . Since every 2 black nodes in level 1−k  correspond to 
1 red node in level 2−k  of T , the number of red nodes in level 2−k  is obviously /2b , and 
thus the size of T ′  must be /22 2log bn +− , which is exactly 11)/42(2= log2log −+−+ − nn np . 
It follows from observation (3) that qprnr +)(=)( . 

The proof is complete.  
According to Theorem 2, a new recursive algorithm for computing the largest number of red 

internal nodes in a red-black tree on n  keys can be implemented. 
For the same problem, we can build another efficient algorithm in a different point of view. Let 

us look at the sequence of the values of )(nr  listed in the increasing order of n . 
If we list the sequence as a triangle ijijit ,21,2,=,0,1,=),,(  , then we can observe some 

interesting structural properties of )(nr . 
It is readily seen that the values in each row have some regular patterns as follows. 
(1) For the fist elements ,1)(it  in each row 0,1,=i , we have,  

1,2,=1,1),(22=,1)(21,,1)(22=1,1)(2 jjtjtjtjt −++ . 
(2) For the elements 1),2( 1 +−iit  in each row 1,2,=i , we have, 12=1),2( 1 −+− iiit . 
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(3) For the elements 12),2,( −≤≤ ijjit  in each row 2,3,=i , we have, cjitjit +− )1,(=),(  
where c  is a constant. 

(4) For the elements ii jjit 22),2,( 1 ≤≤+−  in each row 2,3,=i , we have, 
djitjit i +−− − )21,(=),( 1  where d  is a constant. 

In the insight of these observations, we can build another efficient algorithm to compute )(nr  
as follows. 

Theorem 3  
Let n  be the number of keys in a red-black tree, and )(nr  be the largest number of red nodes 

in a red-black tree on n  keys. If the values of )(nr  are listed as a triangle 
ijijit ,21,2,=,0,1,=),,(   as shown in Table 2, then the values of ),( jit  can be computed by 

the following recursive formula. 
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where  
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According to Theorem 3, a recursive algorithm for computing the values of ),( jit  can be 
implemented as the following Algorithm. 
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It can be seen that for any positive integer n , if )(=),( nrjit , then + 1)(log= ni  and 
22= 1)(log +− + nnj . In a call of Algorithm, 2)2,1)(log( 1)(log +−+ + nnnt  will return the value 

of )(nr . It is obvious that the recursive depth of the Algorithm is at most + 1)(log n . Therefore, 
our new algorithm requires only )log( nO  time. 
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