

An Optimal Algorithm for Computing the Largest Number of Red Nodes
Daxin Zhu1, a, Xiaodong Wang2, b,*

1Quanzhou Normal University, 362000 Quanzhou, Fujian, China.
2Fujian University of Technology, Fuzhou, 350108 Fujian, China.

aemail: dex@qztc.edu.cn, bwangxd@139.com, *Corresponding author

Keywords: Red-black trees; dynamic programming; data structure; time complexity

Abstract. In this paper, we investigate the problem to compute the largest number of red nodes in
red-black trees in red-black trees. We first present a dynamic programming solution for
computing)(nr , the largest number of red internal nodes in a red-black tree on n keys in

)log(2 nnO time. Then the algorithm is improved to a new)(nO time algorithm. Based on the
structure of the solution we finally present a linear time recursive algorithm using only)log(nO
space.

Introduction
Red-black tree was invented in 1972 by Rudolf Bayer[2]. Guibas and Sedgewick named it

red-black tree in 1978[4]. In their paper they studied the properties of red-black trees at length and
introduced the red/black color convention. Andersson [1] gives a simpler-to-code variant of
red-black trees. Weiss [7] calls this variant AA-trees. An AA-tree is similar to a red-black tree
except that left children may never be red. In 2008, Sedgewick introduced a simpler version of the
red-black tree called the left-leaning red-black tree[5] by eliminating a previously unspecified
degree of freedom in the implementation. Red-black trees can be made isometric to either 2-3 trees
or 2-4 trees,[5] for any sequence of operations.

The number of black nodes on any simple path from, but not including, a node x down to a leaf
is called the black-height of the node, denoted)(xbh . By the property (5), the notion of
black-height is well defined, since all descending simple paths from the node have the same number
of black nodes. The black-height of a red-black tree is defined to be the black-height of its root.

We are interested in the number of red nodes in red-black trees in this paper. We will investigate
the problem that in a red-black tree on n keys, what is the largest possible ratio of red internal
nodes to black internal nodes, and what is the smallest possible ratio.

Dynamic Programming Algorithm
Let T be a red-black tree on n keys. The largest and the smallest number of red internal

nodes in a red-black tree on n keys can be denoted as)(nr and)(ns respectively. The values
of)(nr and)(ns can be easily observed for the special case of 12= −kn . In the general
cases, we denote the largest number of red internal nodes in a subtree of size i and black-height
j to be ,0),(jia when its root red and ,1),(jia when its root black respectively. Since in a

red-black tree on n keys we have
njn log2log

2
1

≤≤
, we have,

),,(max=),(
log2log

2
1

kjnakn
njn ≤≤

g (1)

Furthermore, for any ijini log2log
2
1,1 ≤≤≤≤

, we can denote,

5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015)

© 2015. The authors - Published by Atlantis Press 1134

mailto:bwangxd@139.com

−−−+

−−+−

−−+

−−−+−

≤≤

≤≤

≤≤

≤≤

1,1)}1,(,0),({max=),(
,0)}1,(1,1),({max=),(

,0)}1,(,0),({max=),(
1,1)}1,(1,1),({max=),(

/20
4

/20
3

/20
2

/20
1

jtiajtaji
jtiajtaji

jtiajtaji
jtiajtaji

it

it

it

it

a

a

a

a (2)

Theorem 1
For each

ijini log2log
2
1,1 ≤≤≤≤

, the values of ,0),(jia and ,1),(jia can be computed

by the following dynamic programming formula.

 +
)},(),,(),,(),,({max=,1),(

),(1=,0),(

4321

1

jijijijijia
jijia

aaaa
a (3)

Proof.
For each

ijini log2log
2
1,1 ≤≤≤≤

, let ,0),(jiT be a red-black tree on i keys and

black-height j with the largest number of red internal nodes, when its root red. ,1),(jiT can be
defined similarly when its root black. The red internal nodes of ,0),(jiT and ,1),(jiT must be

,0),(jia and ,1),(jia respectively.
(1) We first look at ,0),(jiT . Since its root is red, its two sons must be black, and thus the

black-height of the corresponding subtrees L and R must be both 1−j . For each /20 it ≤≤ ,
subtrees 1,1),(−jtT and 1,1)1,(−−− jtiT connected to a red node will be a red-black tree on
i keys and black-height j . Its number of red internal nodes must be

1,1)1,(1,1),(1 −−−+−+ jtiajta . In such trees, ,0),(jiT achieves the maximal number of red
internal nodes. Therefore, we have,

1,1)}1,(1,1),({1max,0),(
/20

−−−+−+≥
≤≤

jtiajtajia
it

 (4)

On the other hand, we can assume the sizes of subtrees L and R are t and 1−− ti ,
/20 it ≤≤ , WLOG. If we denote the number of red internal nodes in L and R to be)(Lr and

)(Rr , then we have that 1,1),()(−≤ jtaLr and 1,1)1,()(−−−≤ jtiaRr . Thus we have,
1,1)}1,(1,1),({max1,0),(

/20
−−−+−+≤

≤≤
jtiajtajia

it
 (5)

Combining (4) and (5) , we obtain,
1,1)}1,(1,1),({max1=,0),(

/20
−−−+−+

≤≤
jtiajtajia

it
 (6)

(2) We now look at ,1),(jiT . Since its root is black, there can be 4 cases of its two sons such as
red and red, black and black, black and red or red and black. If the subtree L or R has a red root,
then the black-height of the corresponding subtree must be j , otherwise, if its root is black, then
the black-height of the subtree must be 1−j .

In the first case, both of the subtrees L and R have a black root. For each /20 it ≤≤ ,
subtrees 1,1),(−jtT and 1,1)1,(−−− jtiT connected to a black node will be a red-black tree on
i keys and black-height j . Its number of red internal nodes must be

1,1)1,(1,1),(−−−+− jtiajta . In such trees, ,1),(jiT achieves the maximal number of red internal
nodes. Therefore, we have,

1135

),(=1,1)}1,(1,1),({max,1),(1
/20

jijtiajtajia
it

a−−−+−≥
≤≤

 (7)

For the other three cases, we can conclude similarly that
),(=,0)}1,(,0),({max,1),(2

/20
jijtiajtajia

it
a−−+≥

≤≤

 (8)

),(=,0)}1,(1,1),({max,1),(3
/20

jijtiajtajia
it

a−−+−≥
≤≤

 (9)

),(=1,1)}1,(,0),({max,1),(4
/20

jijtiajtajia
it

a−−−+≥
≤≤

 (10)

Therefore, we have,
)},(),,(),,(),,({max,1),(4321 jijijijijia aaaa≥ (11)

On the other hand, we can assume the sizes of subtrees L and R are t and 1−− ti ,
/20 it ≤≤ , WLOG. In the first case, if we denote the number of red internal nodes in L and R to

be)(Lr and)(Rr , then we have that 1,1),()(−≤ jtaLr and 1,1)1,()(−−−≤ jtiaRr , and
thus we have,

),(=1,1)}1,(1,1),({max,1),(1
/20

jijtiajtajia
it

a−−−+−≤
≤≤

 (12)

For the other three cases, we can conclude similarly that
),(=,0)}1,(,0),({max,1),(2

/20
jijtiajtajia

it
a−−+≤

≤≤

 (13)

),(=,0)}1,(1,1),({max,1),(3
/20

jijtiajtajia
it

a−−+−≤
≤≤

 (14)

),(=1,1)}1,(,0),({max,1),(4
/20

jijtiajtajia
it

a−−−+≤
≤≤

 (15)

Therefore, we have,
)},(),,(),,(),,({max,1),(4321 jijijijijia aaaa≤ (16)

Combining (11) and (16) , we obtain,
)},(),,(),,(),,({max=,1),(4321 jijijijijia aaaa (17)

The proof is complete. ■
According to Theorem 1, our algorithm for computing),,(kjia is a standard 2-dimensional

dynamic programming algorithm.

Improvement of the Algorithm

We have computed)(nr and the corresponding red-black trees using Algorithm 1. Some
pictures of the computed red-black trees with largest number of red nodes are listed. From these
pictures of the red-black trees with largest number of red nodes in various size, we can observe
some properties of)(nr and the corresponding red-black trees as follows.

(1) The red-black tree on n keys with)(nr red nodes can be realized in a complete binary
search tree, called a maximal red-black tree.

(2) In a maximal red-black tree, the colors of the nodes on the left spine are alternatively red,
black, , from the bottom to the top, and thus the black-height of the red-black tree must be

nlog
2
1 .

(3) In a maximal red-black tree of k levels, if all of the nodes of the last two levels (1, −kk)
and all of the black nodes of the last third level (2−k) are removed, the remaining tree is also a
maximal red-black tree.

From these observations, we can improve the dynamic programming formula of Theorem 1
further. The first improvement can be made by the observation (2). Since the black-height of the

1136

maximal red-black tree on i keys must be ilog
2
1 , the loop bodies of the Algorithm 1 for j can

be restricted to ij log
2
1= to ilog

2
11+ , and thus the time complexity of the dynamic

programming algorithm can be reduced immediately to)(2nO . By the observation (3), the time
complexity of the algorithm can be reduced substantially as follows.

Theorem 2
Let n be the number of keys in a red-black tree, and)(nr be the largest number of red nodes

in a red-black tree on n keys. The values of)(nr can be computed by the following recursive
formula.

≥+
−

8)(
8<log

=)(nqpr
nnn

nr (19)

where

++−−−
−+−+

−

−

11)/42(22=
11)/42(2=

log1log

log2log

nn

nn

nnq
np

 (20)

Proof.
Let T be a maximal red-black tree of size n . It is obvious that T has + nk log1= levels.
(1) The formula can be verified directly for the case of 8<n .
(2) In the case of 8≥n , we have 3>k . The number of nodes in the last level of T must

be 12= log +− nns . These nodes are all red nodes of T . It is readily seen that every 4 red nodes in
the last level correspond to 2 black nodes in level 1−k of T . Thus the number of black nodes in
level 1−k must be +− 1)/42(2= log nnb . It follows that the number of red nodes in level

1−k of T is bn −− 1log2 . Therefore, the number of red nodes in the last two levels of T
is bs n −+ − 1log2 , which is exactly 11)/42(22= log1log ++−−− − nn nnq .

Let T ′ be the subtree of T by removing all of the nodes of the last two levels (1, −kk) and all
of the black nodes in level 2−k from T . Since every 2 black nodes in level 1−k correspond to
1 red node in level 2−k of T , the number of red nodes in level 2−k is obviously /2b , and
thus the size of T ′ must be /22 2log bn +− , which is exactly 11)/42(2= log2log −+−+ − nn np .
It follows from observation (3) that qprnr +)(=)(.

The proof is complete.
According to Theorem 2, a new recursive algorithm for computing the largest number of red

internal nodes in a red-black tree on n keys can be implemented.
For the same problem, we can build another efficient algorithm in a different point of view. Let

us look at the sequence of the values of)(nr listed in the increasing order of n .
If we list the sequence as a triangle ijijit ,21,2,=,0,1,=),,(, then we can observe some

interesting structural properties of)(nr .
It is readily seen that the values in each row have some regular patterns as follows.
(1) For the fist elements ,1)(it in each row 0,1,=i , we have,

1,2,=1,1),(22=,1)(21,,1)(22=1,1)(2 jjtjtjtjt −++ .
(2) For the elements 1),2(1 +−iit in each row 1,2,=i , we have, 12=1),2(1 −+− iiit .

1137

(3) For the elements 12),2,(−≤≤ ijjit in each row 2,3,=i , we have, cjitjit +−)1,(=),(
where c is a constant.

(4) For the elements ii jjit 22),2,(1 ≤≤+− in each row 2,3,=i , we have,
djitjit i +−− −)21,(=),(1 where d is a constant.

In the insight of these observations, we can build another efficient algorithm to compute)(nr
as follows.

Theorem 3
Let n be the number of keys in a red-black tree, and)(nr be the largest number of red nodes

in a red-black tree on n keys. If the values of)(nr are listed as a triangle
ijijit ,21,2,=,0,1,=),,(as shown in Table 2, then the values of),(jit can be computed by

the following recursive formula.

≤≤+≤+−−
+≤−

≤≤≤−+−
≤

−−

−

−

iii

ii

i

jiijit
ji

jiijit
jii

ii

jit

22,22)()21,(
12=,212

2,221)()1,(
1=,2)(

2<

=),(

11

1

1

η

ξ
ξ

 (21)

where

+−+

−

 −+
−

++ 1)(2
3
1=)1)((2

3
1=)(

1)(2
3
2=

4
1)(32

3
2=)(

11 iii

i
i

i

i

i

η

ξ

 (22)

According to Theorem 3, a recursive algorithm for computing the values of),(jit can be
implemented as the following Algorithm.

1138

It can be seen that for any positive integer n , if)(=),(nrjit , then + 1)(log= ni and
22= 1)(log +− + nnj . In a call of Algorithm, 2)2,1)(log(1)(log +−+ + nnnt will return the value

of)(nr . It is obvious that the recursive depth of the Algorithm is at most + 1)(log n . Therefore,
our new algorithm requires only)log(nO time.

Acknowledgement
This work was supported in part by the Natural Science Foundation of Fujian (Grant

No.2013J01247), Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian
University Laboratory of Intelligent Computing and Information Processing.

References

[1] Andersson, Balanced search treesmade simple, In Proceedings of the Third Workshop on
Algorithms and Data Structures, vol. 709 of Lecture Notes in Computer Science, 1993, pp.
60-71.

[2] R. Bayer, Symmetric binary B-trees: Data structure and maintenance algorithms, Acta
Informatica, 1(4), 1972, pp. 290-306.

[3] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to algorithms, 3rd ed., MIT
Press, Cambridge, MA, 2009.

[4] Leo J. Guibas and Robert Sedgewick, A dichromatic framework for balanced trees, In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, 1978, pp.
8-21.

[5] Robert Sedgewick, Left-leaning Red?CBlack Trees, http://www.cs.princeton.edu/ rs/talks/
LLRB/LLRB.pdf

[6] Henry S. Warren, Hacker's Delight, Addison-Wesley, second edition, 2002.

[7] Mark Allen Weiss, Data Structures and Problem Solving Using C++, Addison-Wesley, second
edition, 2000.

1139

