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Abstract. One of efficient and powerful methods for stimulating real networks and tracking motion 
regulation of networks is to build up some network models. Investigating topological structure of 
networks and building up network models play an important role for understanding more 
microscopic and structural features of etworks. A class of growing tree type of network models has 
been constructed in this article. We focus on building up such models by constructive operations of 
graph theory, and try to determine topulogical properties of the models.  

Introduction  
Complex networks have become a hot academic research. One of the main reasons behind the 

popularity of complex network is their flexibility and generality for signifying real systems in 
nature and society and the Internet of Things. Many scholars have done a large amount of empirical 
research to optical communicationsand networking, mobile and wireless networks security in 
real-life networks. There are two network models: One is the scale-free distribution of degree, 
which implies that many real-life networks display a power law degree distribution, and another is 
the small-world behavior that characterizes those networks having an average clustering coefficient 
much larger than that of random networks, and at the same time the average shortest path distance is 
relatively small compared with the size of the network.  

In 1998, Watts and Strogatz proposed the pioneering small-world network model [1]. Barabási 
and Albert presented the scale-free network model in 1999,, which has a degree distribution of 
power law form [2,3,4]. Inspired by small-world and scale-free two typical network models, Over 
the past decade, the academic community made a number of stochastic models to build scale-free or 
small-world networks and explain their topology in real systems. However, the formation 
mechanism of various real networks are distinct, there exists diversity, richness and complexity. 
Existing models is not far from contain the formation mechanism and methods of the real system. 
Currently, many real systems are not involved in studying complex networks. Apply the views of 
complex networks in these systems research, capture its formation mechanism, set the appropriate 
evolution model, and discuss the properties of the model on these basis, is of great theoretical and 
practical value. Nevertheless, in general, the network are connected, the spanning tree is one 
powerful tool for researching connectivity graph theory, which has been successfully applied to the 
study of practical problems, accumulated a large number of theoretical results [5,6,7]. One of the 
most typical applications of spanning tree, Radia Perlman utilized the structural relationship 
between the spanning tree and network and invent the spanning tree protocol which has been widely 
applied in network bridge and exchange board [8]. Looking spanning tree of scale-free network 
model for practical application provide guidance. Many authors consider the spanning trees of 
wireless sensor networks help us to establish a fully connected vertices with minimal relay vertices 
and base stations to ensure that, in order to improve network survivability [9-13]. The literature [14] 
gives some conclusions on spanning tree. There is no doubt that studying complex network will 
bring new problems and new issues to mathematical body, then resulting in a new research content, 
the accumulation and sublimation of research achievement will lead to new branches of 
mathematics in [15]. 

In general, people presented the construction process of network model, in order to optimize the 
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utilization of the resources, by finding the spanning tree of network model to improve operation 
speed of the network model. In this paper, We focus on building up several tree network models by 
constructive operations of graph theory, and try to determine some properties of these tree network 
models, and then analyze the differences among these tree network models. Besides, we analysis 
the vertex, edge and cumulative distribution relationship among these tree network models, and 
then find out the leaf set and the maximum diameter of them. By reviewing some advances in the 
area we wish to convey the potential for understanding complex systems though the evolutionary 
relationship of the tree networks behind them. 

Main Conclusion 
For an initial network T0 is a tree which contains q vertices and l edges, the notation nv(0) and 

ne(0) represents the number of vertices and edges of T0. V(0) and E(0) denote the vertex set and 
edge set of T0, respectively. Clearly, nv(0) =|V(0)|, ne(0)=|E(0)|. The notation k (u, i) represents the 
number of edges connected with the vertex u in a tree network model at time step in time i. 

N(t)-tree network model. For each vertex u∈VN(0) of tree T0=N(0), add m vertices, and join 
these m vertices with u, the resulting tree network is denoted as N(1), the notation

1NX the set of new 
vertices adding to N(0), 

1NY the set of new edges adding to N(0). Then we have  

1NY ={wu: u∈VN(0), w∈
1NX }, and VN(1)=VN(0)

1NX , EN(1)=EN(0)
1NY ,

1NY =
1NX =mnv(0). 

Similarly, for each vertex v∈VN(1) of the tree N(1), we add m vertices, and join these vertices 
with v, thereby we obtain the tree network N(2). The rest can be done in the same manner, 
according to the above-described structure, add m vertices for each vertex x∈VN(t−1) of tree N(t−1), 
thus, the resulting tree network is denoted as N(t). We called N(t)-tree network model. Since nv(1) = 
nv(0) + mnv(0)=(m+1)q, ne(1)= ne(0)+ mnv(0)=mq+l, 

tNY =
tNX  

It is not difficult to calculate some basic parameters of N(t)-tree network model. when t≥1, it is 
easy to obtain the number of vertices and edges of N(t)-tree network model. 

nv(t) = nv(t−1) + mnv(t-1)=(m+1)t nv(0)= (m+1)tq, ne(t)= ne(t−1)+ mnv(t−1)= (m+1)tq−1,   (1) 
In addition, the number of newly added vertices of N(i)-tree network model 

iNX = nv(i)−nv(i-1)=mq(m+1)i-1     i=1,2,…,t.                 (2) 
In N(t), the maximum degree is Δ(N(t))=Δ(T0)+tm, the minimum degree is δ(N(t))=1. The 

average degree 〈k〉 of N(t)-tree network model 〈k〉=2ne(t)/nv(t)→2 as t→∞., which implies that the 
tree network is sparse network with as few links as possible. According to the construction of the 
N(t)-tree network model, it is not difficult to find that the network was discussed in [16] when the 
tree network T0 is a vertex and no edges. 

M(t)-tree network model. For each vertex u∈VM(0) of initial tree T0=M(0), mp newly added 
vertices, where p represents the probability, and join these mp vertices with u, and then the resulting 
tree network M(1), the notation

1MX the set of new vertices adding to M(0) to form M(1), 
1MY the set 

of new edges adding to M(0) to produce M(1), there are 
1MY ={wu: u∈VM(0),w∈

1MX }, and 
VM(1)=VM(0)

1MX , EM(1)=EM(0)
1MY , 

1MY =
1MX = mpmv(0). 

Analogously, for each vertex v∈VM(1) of tree network M(1), we add mp vertices, and join these 
mp vertices with v, therefore the resulting tree network M(2). By the parity of reasoning, on the 
basis of the above-mentioned structure, add mp vertices for each vertex x∈VM(t−1) of tree network 
M(t−1). Thus, we can obtain tree network M(t) from tree network M(t-1). We named M(t)-tree 
network model. Since mv(1)= mv(0)+mpmv(0)=(mp+1)q, me(1)= me(0)+ mpmv(0)=mpq+l, 

tMY =
tMX  

It is easily to compute some basic parameters M(t)-tree network model. For t≥1, it is easy to 
obtain the number of vertices and edges of M(t)-tree network model 
mv(t) = mv(t−1) + mmv(t−1)=(m+1)t mv(0)= (mp+1)tq, ne(t)= ne(t−1)+ mnv(t−1)= (mp+1)tq−1,  (3) 
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Besides, the number of newly added vertices of M(i)-tree network model  

iMX =mv(i)−mv(i−1)=mpq(mp+1)i−1     i=1,2,…,t.           (4) 
In M(t), Δ(M(t))=Δ(T0)+tmp is the maximum degree, δ(M(t))=1 is the minimum degree. The 

average degree 〈k〉 of M(t)-tree network model 〈k〉=2 me(t) /mv(t) →2 as t→∞. We can see that the 
proposed tree network model is a sparse tree with as few links as possible.  

R(t)-tree network model. For initial tree T0 = R(0), we add mk(u,0) vertices for each vertex 
u∈VR(0), and connect each of them with u, we obtain the tree network R(1). Let

1RX be the set of 
vertices newly added into R(0), and let

1RY be the set of edges newly added into R(0). Thus we have 

1RY ={wu: u∈VR(0), w∈
1RX }, and VR(1) = VR(0)

1RX , ER(1)= ER(0)
1RY ,

1RY =
1RX =2mre(0). 

Similarly, add mk(v,1) vertices for each vertex v∈VR(1) of the tree network R(1), and connect 
each of them with v, the resulting tree network R(2). And so on, in the light of the above iteration 
process, we add mk(u,t-1) vertices for each vertex x∈VR(t-1), thus we obtain tree network R(t) from 
tree network R(t-1). It denotes as R(t)-tree network model. Obviously, 

rv(1)=rv(0)+mre(0)=2ml+q, re(1) =re(0)+2mre(0)=(2m+1)l,
tRY =

tRX . 
From the above steps, we can easily find some basic parameters of R(t)-tree network model. 

when t≥1, it is easy to generate the number of vertices and edges of R(t)-tree network model. 
rv(t) = rv(t-1) +2mre(t-1)=(2m+1)t re(0)= (2m+1)tl+1 re(t)= re(t−1)+2mre(t−1)= (2m+1)tl,     (5) 

Furthermore, the number of newly added vertices of R(i)-tree network model  

iRX = rv(i)−rv(i−1)=2ml(2m+1)i−1, i=1,2,…, t.                 (6) 
In R(t), the maximum degree is Δ(R(t))=(m+1)tΔ(T0), the minimum degree is δ(R(t))=1. The 

average degree 〈k〉 of R(t)-tree network model 〈k〉=2 re(t) /rv(t) →2 as t→∞, which implies that is a 
sparse tree network. According to the construction of the R(t)-tree network model, the network in 
coincide with the phenomenon that "the richer get richer and the poorer get poorer". 

Q(t)-tree network model. For initial tree T0 = Q(0), add mh(b)k(u,0) vertices for each vertex 
u∈VQ(0), where h(b) is environment factor and h(b)>0, and connect these vertices with u, produces 
the tree network Q(1) at time step t=1. Let

1QX be the set of vertices newly added into Q(0), and 
let

1QY be the set of edges newly added into Q(0). Therefore, 
1QY ={wu: u∈VQ(0),w∈

1QX }, and  
VQ(1)= VQ(0)

1QX , EQ(1)= EQ(0)
1QY ,

1QY =
1QX =2mh(b)qe(0). 

Similarly, add mh(b)k(v,1) vertices for each vertex v∈VQ(1) of the tree network Q(1), and connect 
each of them with v, the resulting tree network Q(2). And so on, in the light of the evolution process 
of the model, we add m h(b)k(u,t−1) vertices for each vertex x∈VQ(t−1), thus we obtain tree 
network Q(t) from tree network Q(t−1). It denotes as Q(t)-tree network model. Since 
qv(1)=qv(0)+2mh(b), qe(0)=2mlh(b)+q, qe(1)=qe(0)+2 h(b)re(0)=2mh(b)l+l, 

tQY =
tQX . 

From above description, we can count the order and size of the Q(t)-tree network model. when 
t≥1, it is easy to figure up the number of vertices and edges of Q(t)-tree network model 

qv(t) = qv(t−1)+2mh(b)qe(t−1)=(2m h(b)+1)t (7) qe(0)= (2mh(b)+1)tl+1 qe(t)= qe(t-1)+2mh(b)qe(t−1)= (2m h(b)+1)tl, 
Moreover, the number of newly added vertices of Q(i)-tree network model 

iQX =qv(i)−qv(i−1)=2mh(b)l(2mh(b)+1)i−1, i=1,2,…, t.                (8) 
In Q(t), the maximum degree is Δ(Q(t))=(m h(b)+1)tΔ(T0), the minimum degree is δ(Q(t))=1.The 

average degree 〈k〉 of Q(t)-tree network model 〈k〉=2qe(t)/qv(t)→2 as t→∞. the resulting network is 
a sparse tree whose vertices have many fewer connection than is possible. 

The distribution of the tree network model. Let d1, d2,…, da be the different degree of vertex 
of the initial tree network T0, without loss of generality d1 < d2<… < da. let )0(

jdn  denotes the 

number of degree dj in T0, where j = 1,2, …, a. According to the structure of tree network model, 
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we can see that the model is connected and acyclic. 
The distribution of N(t)-tree network model. By the above facts and

iNX =mq(m+1)i−1, we are 
not difficult to obtain the degree spectrum of N(t)-tree network model at time step t≥1 as follows. 

d 1 m+1 2m+1 … (t−1)m+1 tm+ d1 tm+d2 … tm+ da 
nd(t) 

iNX  
1−iNX  

2−tNX  … 
1NX  )0(

1dn  )0(
2dn  … )0(

adn  

Clearly, it shows that the degree spectrum of N(t)-tree network model is discrete. By the method 
used in [17]. We compute )(kP N

cum  in the following. The cumulative distribution is given by  

t
t

j
jv

v

N
cum m

qm
qmXn

tn
kP −

=

+∝
+
+

=+= ∑ t
tt

)1(
)1(
)1(])0([

)(
1)(

0
 

Substituting τ=t−(k−1)/m in the above expression, then we have (m+1)τ−t∝ (m+1)−(k−1)/m. Hence 
mkN

cum mkP /)1()1()( −−+∝ . Obviously, when the size of the network is large, the cumulative degree 
distribution )(kP N

cum  is a power of degree k.  
The distribution of M(t)-tree network model. By the above analysis and

iMX =mpq(mp+1)i−1. 
For the purpose of simplicity we define a function f(x)=(t−x)mp+1 which denote the degree enter in 
the tree network at time step t. We can obtain the degree spectrum of the M(t)-tree network model. 

d 1 f(1) f(2) … f(−1) tmp+ d1 tmp+d2 … tmp+da 
nd(t

) iMX  
1−iMX  

2−tMX  … 
1MX  )0(

1dn  )0(
2dn  … )0(

adn  

Due to the discreteness of this degree spectrum, it is convenient to obtain the cumulative 
distribution )(kP M

cum , according to the statistical techniques used in literature[17], it is the 
cumulative distribution. 

t
t

j
jv

v

M
cum mp

mpq
mpqXm

tm
kP −

=

+∝
+
+

=+= ∑ t
tt

)1(
)1(
)1(])0([

)(
1)(

0
 

Using τ=t−(k−1)/mp, then we have (mp+1)τ−t∝ (mp+1)−(k−1)/mp, mpkM
cum mpkP /)1()1()( −−+∝ . It 

indicates that the M(t)-tree network model obeys the exponential law form. 
The distribution of R(t)-tree network model. By the above analysis and 

iRX =2ml(2m+1)i−1, 
we can easily to gain the degree spectrum of theR(t)-tree network model 

d 1 m+1 (m+1)2 … (m+1)t−1 (m+1)td
1 

(m+1)td
2 

… (m+1)td
a 

nd(t) 
iRX  

1−iRX  
2−tRX  … 

1RX  )0(
1dn  )0(

2dn  … )0(
adn  

Note that the degree spectrum of R(t)-tree network model is discrete, according to the statistical 
techniques used in [17], it is the cumulative distribution 

t
t

j
jv

v

R
cum m

lm
lmXr

tr
kP −

=

+∝
++
++

=+= ∑ t
tt

)12(
1)12(
1)12()0([

)(
1)(

0
 

Plugging τ=t−lnk/ln(m+1), thus we obtain (2m+1)τ−t ∝ (2m+1)−lnk/ln(m+1),therefore 
)1ln(/)12ln()( ++−∝ mmR

cum kkP . It indicates that the R(t)-tree network model obeys the power law, and is 
a scale-free tree. 

The distribution of Q(t)-tree network model. By the above analysis and 
iQX =2mlh(b)(2m 

h(b)+1)i-1. we can easily to gain the degree spectrum of Q(t)-tree network model 
d 1 mh(b)+1 (mh(b)+1)2 … (mh(b)+1)t−1 (mh(b)+1)td

1 
(mh(b)+1)td

2 
… (mh(b+1)td

a 
nd(t) 

iQX  
1−iQX  

2−tQX  … 
1QX  )0(

1dn  )0(
2dn  … )0(

adn  

Note that the degree spectrum of R(t)-tree network model is discrete, according to the statistical 
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techniques used in [17], it is the cumulative distribution 
t

t
j

v
v

Q
cum bmh

lbmh
lbmhjq

tq
kP −

=

+∝
++

+
== ∑ t

tt
]1)(2[

1)1)(2(
)1)(2()(

)(
1)(

0
 

Substituting τ=t−lnk/ln(mh(b)+1), thus we have (2mh(b)+1)τ−t ∝ [2mh(b)+1]−lnk/ln(mh(b)+1), so 
)1h(b)ln(/)1h(b)2ln()( ++−∝ mmQ

cum kkP . It indicates that the Q(t)-tree network model exhibits the power law, 
which has the same degree exponent as the scale-free network model. 

The evolutionary relationship between the tree type of network models 
The vertex and edge relationship among tree type of network models. Since the number of 

vertices and edges of the N(t)-tree network model respectively, nv(t)=(m+1)tq, ne(t)=(m+1)tq−1. The 
number of vertices and edges of the M(t)-tree network model respectively, mv(t)=(mp+1)tq, 
me(t)=(mp+1)tq−1. It implies that when p=1, the number of vertices and edges of the N(t)-tree 
network model equal to the number of vertices and edges of the M(t)-tree network model. Besides, 
the number of vertices and edges of the R(t)-tree network model respectively, rv(t)=(2m+1)tl+1, 
me(t)=(2m+1)tl, the number of vertices and edges of the Q(t)-tree network model respectively, 
qv(t)=(2mh(b)+1)tl+1, qe(t)=(2mh(b)+1)t l. It means that when h(b)=1, the number of vertices and 
edges of the R(t)-tree network model equals to the number of vertices and edges of the Q(t)-tree 
network model. 

The cumulative distribution relationship among tree network models. According to the above 
computation the )(kP N

cum , )(kP M
cum obeys the exponent law, )(kP R

cum , )(kPQ
cum exhibits the power law, 

belongs to scale-free network model. Because the N(t)-tree network model and the R(t)-tree network 
model have no relationship with the probability and the environmental factors, we called this 
regular network model. The M(t)-tree network model and the Q(t)-tree network model have an 
relation on probability and the environmental factors, we call them the irregular network models. 

The leaf sets and diameters of four models. The leaf sets of four models are 
tttt QRMN XXXX ,,, , 

respectively. According to the increasing ways we know that the diameters of four models are 
identical. Hence, we only give a sharp proof of the N(t)-tree network model. Since we can obtain 
the network N(t) from the network N(t−1), the diameter of the initial tree T0 is equal to D(T0). At 
each time step t≥1, we can easily see that the diameter always lies between a pair of vertices that 
have just been created at this time step. We will call such newly-created vertices the outer vertices. 
At each time step t≥1, we note that an outer vertices cannot be connected with two or more vertices 
that are created during the same time step t’≥t−1. Indeed, we know that from step 1, no outer vertex 
is connected to a vertex of the initial network T0. Thus, for any step t≥1, any outer vertex is 
connected with the vertices that appeared as pairwise different steps. Now consider two outer 
vertices are created at time step t≥1, say ut and vt. Then vt is connected to the last layer vertices, 
which is must be created before or at time step t−1. We repeat this argument, if we make m jumps, 
from ut we arrive in the initial T0, in which we reach any vt by using an edge of T0 and making m 
jumps to vt in a similar way. Thus the diameter tTDtND 2)())(( 0 +≤ . 

Conclusion 
We have constructed four tree type of network models, tand given the distribution of these 

models, verified the scale-free properties on them, found out the leaf set and the maximum diameter 
of the model, and analyzed the relationship among four models. The M(t)-tree network model and 
the Q(t)-tree network model can be established in the research of non-tree network model has been 
widely applied in many areas. These two models not only provide a reliable theoretical basis for 
studying of the actual network construction, but also provides the efficient tool which easy to 
understand and master for the actual network. As a further study, we can consider the network 
model from the tree network model to the general network model, tree network model with 
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randomly add or delete some edges, whether have a decisive function for the initial network model. 
So one can better simulate actual network in real-life network models as diverse as the cell or 
WWW. 
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