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Abstract. In this paper, we got the aircraft soft landing trajectory model based on the dynamic 
model, at the same time, regard saving energy and reducing the economic costs as the main purpose, 
respectively, we gave the corresponding optimal control strategy for each orbit phase. 

Introduction 
In the condition of determining the orbit, the optimal control is very important, which can not 

only reduce costs, but also can save the energy, optimization control theory method has different 
kinds, good method will provide a theoretical basis for the aviation sector. In order to identify 
practical methods orbit model, many researchers at home and abroad for a soft way orbit carried out 
a large number of model studies. Jain and others proposed a method based on multi-resolution to 
solve the trajectory optimization problems[1]. Wang and others completed the study that applying 
the genetic algorithm in the soft landing trajectories optimization under the condition with constant 
thrust amplitude[2]. Bonami and others consider the integer and continuous variables for a plane 
trajectory optimization method[3]. Peng and others studied rapid orbit optimization problem about 
fixed point soft landing of lunar lander by using Gauss pseudo method[4]. Applying elasticity of 
rope, complex state and the influence of control and constraint, under the rope system, Liu and 
others studied the optimal control problem of the orbit transfer in satellite surface[5]. Garg proposed 
a optimal trajectory control problem directly at the point of the LGR(Legendre-Gauss-Radau)[6]. In 
this paper, based on the knowledge of dynamics, method of determining aircraft landing trajectory 
is given, and Based on the principle of optimization, researching a parameter control method 
combining dynamics to solve the spacecraft precise fixed point soft landing optimal control 
problem, Then, obtaining the soft landing optimal orbit and realizing resource conservation. 

Aircraft Soft Landing Trajectory Model 
It’s very important to determine aircraft soft landing orbit for Precision landing in space, 

dynamic orbit determination is a basic method for precise orbit determination of spacecraft. Here, 
we first give the orbit model, specific methods are as follows: 

The equations of motion detectors in the month fixed coordinate can be expressed as:  
�̇�𝑥𝑙𝑙 = 𝑉𝑉𝑥𝑥𝑙𝑙, �̇�𝑦𝑙𝑙 = 𝑉𝑉𝑦𝑦𝑙𝑙, �̇�𝑦𝑙𝑙 = 𝑉𝑉𝑦𝑦𝑙𝑙, 𝑚𝑚 = −𝐹𝐹 𝐶𝐶⁄                       (1) 

𝑉𝑉𝑥𝑥𝑙𝑙 = 𝑂𝑂𝐹𝐹 𝑚𝑚⁄ − 𝑔𝑔𝑥𝑥𝑙𝑙 + 2𝜔𝜔𝑙𝑙                            (2) 
𝑉𝑉𝑦𝑦𝑙𝑙 = 𝑃𝑃𝐹𝐹 𝑚𝑚⁄ − 𝑔𝑔𝑦𝑦𝑙𝑙                              (3) 
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𝑉𝑉𝑧𝑧𝑙𝑙 = 𝑄𝑄𝐹𝐹 𝑚𝑚⁄ − 𝑔𝑔𝑧𝑧𝑙𝑙 + 2𝜔𝜔𝑙𝑙𝑉𝑉𝑥𝑥𝑙𝑙                          (4) 

        
   Fig. 1 The first coordinate system       Fig. 2 The second coordinate system 

In Fig. 1, we define the inertial coordinate system oxyz, the origin in the month, the reference 
plane is lunar equatorial plane, ox axis directs the ascending node of the moon's equator relative to 
moons path , oy axis directs the moon rotation direction, oz axis is determined by the right rule. 
Again, we define the monthly fixed coordinate system oxlylzl, the reference plane is the moon 
equatorial plane, The oxl axis points to the line of intersection of the equatorial plane and the 
initial meridian plane, oyl axis directs the moon rotation direction, ozl axis is determined by the 
right rule. 

In Fig. 2, Ax1y1z1 is the orbit coordinate system that the origin is the center of the aircraft, Ay1 
points to the direction from the moon’s heart to the extension line of aircraft, Ax1 points to 
direction of movement and Ax1 perpendicular to the Ay1, Az1 axis is determined by the right rule. 

Here: 
𝑂𝑂 = (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾) 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 − (𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾) 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓  
    + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗 
𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓  
𝑄𝑄 = (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾) 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 − (𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾) 𝑐𝑐𝑠𝑠𝑠𝑠 𝜗𝜗 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓  
    + 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝜗𝜗  
𝐺𝐺𝑥𝑥𝑙𝑙 = 𝐺𝐺𝑀𝑀

𝑥𝑥𝑙𝑙
2+𝑦𝑦𝑙𝑙

2+𝑧𝑧𝑙𝑙
2 + 𝑥𝑥𝑙𝑙

�𝑥𝑥𝑙𝑙
2+𝑦𝑦𝑙𝑙

2+𝑧𝑧𝑙𝑙
2
  

By using yl, zl instead of xl, we can obtain gxl, gyl, GM is moon gravitational constant. C is a 
braking rockets specific impulse, it’s a constant, m is the quality of aircraft, F is the engine 

thrust. 
Boundary conditions： 
The initial condition for the lunar lander with dimensionless： 

⎩
⎪
⎨

⎪
⎧
�̇�𝑣𝑟𝑟0 = 0           
�̇�𝑣𝜃𝜃0 = 𝑣𝑣𝜃𝜃0

�𝑅𝑅𝐿𝐿 𝐺𝐺𝑀𝑀 ⁄
   

�̇�𝑟0 = 𝑅𝑅𝐿𝐿+ℎ0
𝑅𝑅𝐿𝐿

       
𝜃𝜃0 =  𝜃𝜃              

                             (5) 

Here: vθ0  is The initial speed of the decline stage, h0  is the initial height of dropping, 
generally it’s 15km. 

The terminal condition for the lunar lander with dimensionless: 

     

⎩
⎪
⎨

⎪
⎧

v̇rf = 0                      
v̇θf = vθ0

�RL GM ⁄
              

ṙf = RL+hf
RL

                   
θf = θ + Δθ                

                        (6) 
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ℎ𝑓𝑓 is the aircraft height at the end of decline stage, generally it’s 2km. 𝑅𝑅𝐿𝐿 is the radius of the moon, 
𝜃𝜃 is polar angle of aircraft. 

Optimal Control Strategy  
Based on the principle of optimal fuel consumption, using the parameter control, we converted 

dynamic optimal control problem for a static parameter optimization problem, by numerical 
calculation, and then get the detector's optimal trajectory. Specific methods are as follows: 

Take �xl, yl, zl, Vxl, Vyl, Vzl, m�′ as the system state variables, and we regard u = [ϑ,ψ, F]′ as the 
control variable. 

   Orbital coordinate system to the inertial coordinate system transformation matrix: 

𝑇𝑇1 = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽

𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
� 

Inertial coordinate system to the fixed coordinate system transformation matrix: 

𝑇𝑇2 = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 0 −𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾

0 1 0
𝑐𝑐𝑠𝑠𝑠𝑠 𝛾𝛾 0 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾

� 

1) The main reduction stage, fuel consumption optimal control strategy 
According to the requirements of the fuel consumption optimal, take performance indicators for 

this: 

               𝐽𝐽 = 𝑘𝑘�𝑉𝑉𝑥𝑥𝑙𝑙2 �𝑡𝑡𝑓𝑓� + 𝑉𝑉𝑦𝑦𝑙𝑙2 �𝑡𝑡𝑓𝑓� + 𝑉𝑉𝑧𝑧𝑙𝑙2�𝑡𝑡𝑓𝑓� + 𝐶𝐶−1 ∫ 𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑓𝑓
0               (7) 

In addition there are constraints: 

𝐺𝐺 =

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = 𝑥𝑥𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑥𝑥𝑙𝑙𝑓𝑓 = 0               
𝑔𝑔2 = 𝑦𝑦𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑦𝑦𝑙𝑙𝑓𝑓 = 0              
𝑔𝑔3 = 𝑧𝑧𝑙𝑙�𝑡𝑡𝑓𝑓� − 𝑧𝑧𝑙𝑙𝑓𝑓 = 0               

𝑔𝑔3 = �𝑥𝑥𝑙𝑙2 + 𝑦𝑦𝑙𝑙2 + 𝑧𝑧𝑙𝑙2 − 𝑟𝑟𝑓𝑓 ≥ 0

                        (8) 

Here: 
𝑥𝑥𝑙𝑙𝑓𝑓, 𝑦𝑦𝑙𝑙𝑓𝑓, 𝑧𝑧𝑙𝑙𝑓𝑓 as scheduled landing site coordinates in month fixed coordinate system, and landing 

site to month heart distance, the radius of the moon is 𝑟𝑟𝑓𝑓 = �𝑥𝑥𝑙𝑙𝑙𝑙2 + 𝑦𝑦𝑙𝑙𝑙𝑙
2 + 𝑧𝑧𝑙𝑙𝑙𝑙

2 . 

In the system of (1), (2), (3), (4) to satisfy the constraint function under the condition of  G, 
obtain the suitably controlled variable u to make index (7) reaches the minimum. 

2) Rapid adjustment stage, time optimal control strategy 
Rapid adjustment stage, in order to land smoothly, the aircraft mainly to adjust their position, 

time optimization is the mainly optimization strategy on the stage. 
3) Obstacle avoidance stage, line optimal control strategy 

          
Fig. 3 coarse obstacle avoidance control strategy  Fig. 4 fine obstacle avoidance control strategy 
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Coarse obstacle avoidance area: at 2300*2300: the gray value of the image by reading 2300 
height, the grey value is stored in a matrix of 2300*2300; after establishing a 200*200 matrix that it 

all element is 1,ach point on the2300*2300 pixel area will be scanned, and to make it gray 
variance, 

and through the comparison of variance each scanning area, take the minimum for optimal 
landing area. 

Run the program using MATLAB, by two layers of loop will conform to the conditions of 
scanned grey value area all into 1 , is not in conformity  will be value of 0; In the end, the grey 
value of all area to be 1 is the optimal landing area. 

Because it is the essence of obstacle avoidance, it should be fixed matrix size reduction, reduce- 
ng 1000*1000 to 100*100, later in the same way to scan the areas of pixel can be 1000*1000, in 
order to better reflect the degree of the smooth surface of the landing, the optimal landing area is the 
gray variance minimum.(as shown in Fig. 3 and Fig. 4) 

4) Decline stage with slow speed   
This stage to control the aircraft uniform descent, then, the moon's attractiveness and reducing 

engine thrust balance each other. By the definition of specific impulse and the law of conservation 
of momentum: 

∫ 𝑣𝑣𝑒𝑒𝐹𝐹𝑡𝑡 = ∆𝑚𝑚𝑣𝑣𝑡𝑡
0                                (9) 

here: m1v1 − m2v2 = ve∆m, The deceleration stage propellant consumption for ∆m, vε is 
specific impulse, then, we should make deceleration motor thrust equal to the aircraft 's gravity.   

5) free fall stage  
Because the aircraft is still free fall, so here we don’t do optimal control. 

Summary 
Dynamic orbit determination is a basic method for precise orbit determination of spacecraft. This 

paper presents the corresponding theory of dynamic orbit determination, in the case of determining 
orbit, we also focus on the corresponding period optimization problem in orbit determination 
condition by adding the parameter. With the rapid development of the aerospace technology at 
domestic and foreign, measurement and control requirements and conditions become more and 
more diversified, many new problems began to appear as energy conservation and economic project 
and so on, it needs to find a more suitable method to deal with different situations. 
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