
Code Coverage Visualization on Web-Based Testing Tool for Java Programs

Mochamad Chandra Saputra*, Tetsuro Katayama†
*Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia

†University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
E-mail: andra@ub.ac.id, kat@cs.miyazaki-u.ac.jp

Abstract

The visualization of statement coverage (C0) and branch coverage (C1) measurement output can be used in several
ways to improve the verification and validation process. The result displays are percentage of a successful tested
code and visual information with highlighted in bright green as information of executed lines, bright yellow for
statement coverage and dark green The web-based testing tool significantly reduces the time for testing the code
and help user to understand the behavior of the tested code.

Keywords: Visualization on software testing, Code coverage, Web-based testing tool, Java

1. Introduction

There are many ways to measure software development
incorrectly. Testing can be the process of validating and
verifying the software product to ensure the business
and technical requirements to work as expected.1

A common way to evaluate tests is to measure code
coverage. Code coverage helps software engineers to
understanding which portion of code has been executed,
measure the percentage of source code executed during
the run and also the software engineering using a given
test suite throughout the software testing process. 2

Since software testing is a long and complex
process with probably huge result data collection, visual
information will provide testers with a quick and
general perspective, which leads to a better
understanding of a system’s software behavior.3
Implementing software testing as a web application for
visualizing the result of testing is one of the solution to
easily understand the behavior of a software code.

The main advantages of adopting the web
applications are (1) no installation costs, (2) automatic
upgrade with new features for all users, (3) universal

access from any machine connected to the Internet, and
(4) independence from the operating system.4

To display the testing process and to understand
the behavior of a code, this research has implemented a
code coverage visualization on web-based testing tool
for java programs. The testing process is shown the
executed each line of tested code and calculation of the
lines that executed several times using statement
coverage.

2. Specifications and Implementation Policies For
The Tool

2.1 Specifications

This research uses statement coverage (C0) and branch
coverage (C1).5

The testing tool has three parts: uploader code, java
service testing, and insertion of temporary database. The
java service testing has four sub-parts: analyzer, C0 and
C1 instrument code generator, testing part, and random
data generator as shown the design system in Fig.1.

To implement this model, several steps are followed.

Journal of Robotics, Networking and Artificial Life, Vol. 2, No. 2 (September 2015), 89-93

Published by Atlantis Press
Copyright: the authors

89

Fig. 1. Design of the testing tool.

1. Uploader code is an input of testing tool.
The input is tested code from a user into the server

that used for the java service testing. Tested code is a
java program.

2. Java service testing
a) Analyzer loads the original tested code and then

the original tested code used by the C0 and C1
instrument code generator, testing part, and random data
test generator. The testing tool will execute the java
service testing to analyze and read the original code
based on the information on the specified file, then
testing the code and inserting it into a temporary
database for javascript visualization.

b) The C0 and C1 instrumented code generator
generates a C0 and C1 instrumented code. It is inserted
or rewritten instrument code at each line of the original
code, and it is used for calculating the number of
executions of C0 and C1.

c) Testing part views the covering status of
statements and branches by inputting random data
during the background process. Java service testing
finds the class name of the original code by pattern
matching. The class name is used when the C0 and C1
instrumented code generator generates the instrumented
code.

The testing method process will insert the data
execution line by line into the database. Data stored in
the database are the line number, number of executions
of each line, and tested code.

When the java service testing executes a testing, the
service assigns 1 to an element of the array that

corresponds to the executed statement. When all
elements of the array C0 are assigned 1, the java service
testing judges C0 satisfies 100% and also for C1.

d) Random data generator generates random test
data. Users of the testing tool do not need to describe
the test data. The random data generator starts after
generating the C0 and C1 instrumented code. The
testing part executes the C0 and C1 instrumented code.
The random data generator inputs random data into the
C0 and C1 instrumented code on behalf of the users
inputting data per standard input instructions.

After each execution of the C0 and C1 instrumented
code by the testing part, the testing tool obtains the
covering status of statements and measures C0 and C1.
The testing tool visualizes the covering status of the
statements by highlighting the original code that is
displayed and animated as the sequence process
executes the tested code.

2.2 Implementation

This research implements the web-based software
testing tool of an automatic unit testing tool using
random testing for java programs. This testing tool can
automatically test a program based on statement
coverage (C0) and branch coverage (C1), without
preparing test data by user. As an example of the tested
code is Class CheckNumber. Fig.2 shows the tested
code with C0 and C1 instrumented Code. To test the
code, the following steps are used to generate the code:

• Insert a package before the first line of Fig.2, to

generate the C0 and C1 instrumented code.

Fig. 2. Example of the C0 and C1 instrumented Code
CheckNumber tested code.

Published by Atlantis Press
Copyright: the authors

90

Fig. 3. Static display for investigation of the
CheckNumber tested code

• Rewrite an original class name as a class name
“MyCheckNumber” specified in advance by the
testing part.

• Insert an assignment statement after all statements
to gain the covering status of the statements.

• Insert an assignment statement to store outputs after
standard input instruction “System.out.println”.

• Random data are used for data test the code and
then automatically tested for the CheckNumber2
using C0 and C1 instrumented code to verify the
branch condition. Each data testing process are
insert into the database using for visual information.

Code instrumentation in this research consists of

inserting some additional codes to measure coverage
results. Instrumentation can be done at the source level
in a separate pre-processing phase with pattern
matching or at runtime by measure of coverage result.
Data gathering consists of storing coverage data
collected during test runtime.

Random data tests provide the application under
testing with input data generated at random. Typically,
testers pay no attention to expected data types.6 The
type of random data used in the testing tool is integer
only.

The testing tool has two result displays. The first is a
static display as shown in Fig.3. The testing tool

displays the static result of testing as the number of each
line execution, measurement percentage of success from
the statement and branch coverage, and time execution
for testing as how many times the line was executed by
the java service testing.

The second result display is dynamic with Ajax. The
result display visualizes the behavior of the tested code
as shown in Fig.4. Certain coverage analysis tools also
depict coverage visually, often by highlighting portions
of code that are unexecuted by a test suite.7 In this
research, the visual information resets every time a
tester select a new code and then tests the code. The
testing tool performs new visualizations to know the
behavior of the code, and that it does not accumulate
with each successive test run before the testing.

3. Discussion

The testing tool can show the correlation between visual
information and software testing. This correlation means
results collection and a better perspective of software
testing. The testing tool shows the correlation as visual
information, and it allows a better understanding of the
behavior of the tested code.

Visual information describes the behavior of the
tested code as a sequence of the line executed by the
testing tools. Visual information helps to understand the
behavior of the tested code. The result displays for
visual information have been highlighted in bright green

Fig. 4. Dynamic display for investigation of the
CheckNumber tested code

Published by Atlantis Press
Copyright: the authors

91

as information on executed lines, bright yellow for
statement coverage and dark green for branch coverage.
Visual information describes the behavior of the tested
code as a sequence of the line being executed.

Code coverage visualizations are supposed to
improve developer efficiency and knowledge and
promote more productive testing strategies. The
research for the visualization leads developers toward a
better standard of test effectiveness.

The testing tool uses java file CheckNumber that
inputs 19 lines and then to measure statement coverage,
branch coverage, number of runs and the input of each
program to the end of testing by C0 and C1 to reach
100%. The testing measured at the web server with
CentOS release 5.9 (Final), Apache/2.2.3, Intel(R)
Xeon(R) CPU 3050 @2.13GHz, PHP Version 5.3.3.

The times execution for testing the class
CheckNumber is 716 ms and if we test manually (by
humans), the average time is 4 minutes 15 second as
shown in Table 1. The testing tool can reduce time to
describe a tested code and execute unit testing in a
shorter time.

Visualization concerns the graphical representation
of information to assist human comprehension of and
reasoning about that information.8 The testing tool result
makes possible distribution of the software testing
scalability problem, making certain key choices instead
a technical distribution of responsibilities.

4. Conclusion

To improve the efficiency of testing in software
development, this research has implemented a web-
based software testing tool with java service testing of
an automatic unit testing tool for java programs with

random testing. The implemented testing tool generates
the C0 and C1 instrumented code from the original code.
The testing tool uses java service testing to
automatically test a program by inputting random data
into the C0 and C1 instrumented code. After testing, the
obtained result is output as a static html page and
dynamic display for visual information with Ajax.

The testing tool can show the correlation between
visual information and software testing as a result
collection and perspective of software testing as a
sequence of the line executed by the testing tools. The
testing tool can reduce the time needed to describe a
tested code and execute unit testing. The time execution
needed to test CheckNumber was 716 ms.

Future issues are as follows:

• Expand the type of a data test can input data tests
other than type int.

• Measurement with key performance indicators for
software development like resources and cost,
product size and stability, product quality, process
performance, technology effectiveness.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number 24500044.

References

1. Sivakumar.N.,Vivekanandan.K. “Comparing the Testing
Approaches of Traditional, Object-Oriented and Agent-
Oriented Software System”, International Journal of
Computer Science & Engineering Technology (IJCSET),
3(10) (2012) 498-504.

2. Heed. Per., Westrup. Alexander., Runeson.Per.
“Automated Platform Testing Using Input Generation and
Code Coverage”. Master Thesis Document. Lund
University, Faculty of Engineering (2009).

3. Wang.Huansong., Zhang.Xiang., Zhou.Mingqi . “MaVis:
Feature-based Defects Visualization in Software Testing”,
Engineering and Technology (S-CET) 2012 Spring
Congress on (2012) 1-4.

4. Dogana.Serdar., Betin-Cana.Aysu., Garousia.Vahid. “Web
application testing: A systematic literature review”, The
Journal of Systems and Software (ELSEVIER), (2014) 174-
201.

5. ISTBQ. “How to Calculate Statement, Branch/Decision
and Path Coverage for ISTQB Exam Purpose”.
http://www.ajoysingha.info

Table 1. Time comparison between using the testing
tools and manual testing (by human)

Published by Atlantis Press
Copyright: the authors

92

6. Agarwal,B. B., Tayal, S. P., Gupta, M. “Software
Engineering & Testing An Introduction”, Jones and
Bartlett Publishers, (2010) 161-179.

7. Lawrance, Joseph., Clarke, Steven., Burnett, Margaret.,
Rothermel, Gregg. “How Well Do Professional
Developers Test with Code Coverage Visualizations? An
Empirical Study”, IEEE Computer Society, (2005) 53-60.

8. Petre, Marian.,Quincey, Ed de. “A gentle Overview of
Software Visualisation”, Computer Society of India
Communications, (2006) 1- 10.

Published by Atlantis Press
Copyright: the authors

93

	1. Introduction
	Acknowledgements
	Table 1. Time comparison between using the testing tools and manual testing (by human)

