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Abstract—Machine failure prognostic is concerned with the 
generation of long term predictions and the estimation of the 
probability density function of the remaining useful life. For 
this we propose a framework for data-driven prediction of 
RUL. To solve the problem of lacking direct condition 
information in predicting equipment residual useful life 
(RUL), particle-filtering model is built for equipment's RUL 
prediction with indirect information, which is easy to 
get .This paper introduces a particle-filtering modeling 
approach for predicting the remaining lifetime of the wind 
turbine gearbox based on information of SCADA system 
monitoring. Data from the SCADA system for the wind 
turbine gearbox were used to validate the proposed 
methodology. The outcome shows that the PF method has a 
better effect on RUL prediction．Finally, the model verified 
through on-site data collection. It shows that the method is 
practical value in the prediction of remaining life. A new 
way for state recognition of complex equipment is provided. 

Keywords- residual useful life prediction; particle-filtering; 
wind turbine gearbox; SCADA system;model 

I.  INTRODUCTION 

Predicting the remaining lifetime of a component is an 
important problem, e.g. in optimizing system maintenance. 
The component lifetime is often modeled using only a 
static probability distribution that does not take into 
account any condition monitoring data. An important 
feature of new generation of condition monitoring systems 
is the prediction of future evolution of the fault. Even more, 
it can predict the remaining useful life of the component 
under changing operating condition, thus providing 
information to operators on how the different operating 
regimes will affect the components useful life. This is a 
relatively new research area and has yet to receive its 
prominence compared to other condition monitoring 
problems [1].  

Development of prognostic models that can be used to 
predict the remaining useful life of equipment components 
has attracted a significant amount of research in recent 
years. Several good overview papers addressing the 
prognostic techniques exist the most recent being those of 
[2]. The set of proposed approaches can roughly be 
divided into physics based models and data-based models. 
The physics-based models rely on detailed physical 
modeling by means of finite element method, which serves 
to compute spatial distributions of stresses in the material 
[3], [4].  

The idea of data-driven methods is to make use of 
condition monitoring data to build the model and then use 
the model to predict future trend. Many ideas were 
proposed, perhaps the most simple one is to describe the 
condition monitoring data as static functions of time. 
Model parameters are adapted on-line so that change in the 
trends can be promptly traced [5].  

A number of authors suggested use of neural networks 
as an efficient time series prediction tool. For example, 
Wang et al. [6] apply neural network to predict crack in 
rolling bearing by on-line adaptation of the network 
parameters. Unfortunately, only one-step ahead prediction 
is achieved. Problems might also occur when the training 
data set is too short. To partly alleviate this problem Wang 
et al. [7] combine neuro-fuzzy predictor with expert 
knowledge needed to tune the predictor. Authors have also 
suggest the use of nonlinear state filtering and prediction 
based on various particle filters strategies [8]. Their idea is 
to calculate the probability density function of the 
predicted life times, based on a dynamic model with 
known parameter values. 

The aim of this paper is to alleviate the need for 
extensive prior efforts related to modeling and propose a 
framework for data-driven prediction of the remaining 
useful life (RUL) with on-line estimation of the state-space 
model.  
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Wind turbine gearboxes are not always meeting 20-
yeardesign life. Premature failure of gearboxes increases 
cost of energy. The wind turbine gearbox cost is high, and 
in case of failure, repair time is longer. This problem is 
widespread, which affects most original equipment 
manufacturers.  As a result, the maintenance and the RUL 
estimation of wind turbine gearbox is of critical 
importance to wind farm operators[9]. Figure 1. Share of 
the main components of the total number of failure 
downtime. 

 
Figure 1. Share of the main components of the total number of failure 

downtime 

II. MODEL ESTIMATION 

Prognosis may be essentially understood as the 
generation of long-term predictions for a fault indicator, 
made with the purpose of estimating the RUL of a failing 
component. Let us assume that there exists at least one 
feature that provides the information about the current 
extent of the fault in a mechanical system and its value is 
available trough noisy measurements. Furthermore, 
different operating conditions affect the extent and the rate 
of change of the underlying fault as well as the current 
feature value. Finally, when the fault occurs, its 
progression can be described by a stochastic dynamical 
process [10], [11]. 

In general, we use the following equation of state and 
Measurement to describe the evolution of the system 
model and the state vector: 

)2()v,(hy

)1()n,( 11

kkk

kkk

x

xfx



   

where xk is the system state, who obeys the first-order 
Markov process. yk is the vector measurement sequence. 
nk-1 and vk  are random variables describing system and 
measurement noise. First assume that the system initial 
state p(x0) is known. The state transition probability 
p(xk|xk-1) is given by the equation of state (1) and the 
known distribution of the type in the noise vector ωk . 

The results we want to get the posterior probability 
distribution p(xk|z0,k). In the Bayesian framework, 
probability distribution p(xk-1|z0,k-1) is known at k-1 
moment, according to state equations (1) to predict the 
state of the prior probability distribution system. Obtained 
by the Chapman-Kolmogorov equation: 
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 At k moment we collect new observations zk, the 

posterior distribution of the system state updates based on 
Bayes rule, to obtain the current status xk of the 
distribution system: 
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Recursion formula (3) and (4) form the basis of 

Bayesian recursive solving. Analytically it is difficult to 
solve the above distribution, because the calculation 
requires a lot of computing and high-dimensional 
integration operations. This requires an effective 
method for solving. 
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, so the posterior 
probability distribution of the target state at k moment 
to be discrete: 

)()|(p :0:0
1

:1:0
i
kk

Ns

i

i
kkk xxzx  




  (5) 

The weight is chosen by the importance sampling 

method. 
 Nsik ,,1,0,xi

:0 
 set of particles obtained 

by the importance density function q(x0:k,z1:k). 
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The posterior probability density p can be expressed as: 
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This model can be used to estimate the current state, 
predict the future evolution of the fault and assess the RUL. 

 

III.  CASE STUDY 

A model of a wind farm with 1.5MW wind turbine 
gearbox is verified. Gearbox is the main power source to 
work the entire wind turbine operation, the impeller plays 
a role in providing a wind, wind power delivered by 
gearbox increases the speed, the rotational speed of the 
output shaft of the generator required to reach the rated 
speed, leading to normal power generators. The basic 
structure of a wind farm wind turbine drive train can be 
seen in Figure 2. Figure 2 shows that the wind turbine 
gearbox transmission system uses three gear. 
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Figure 2. The basic structure diagram of the wind turbine 

Get thirty days before gearbox failure SCADA 
system records the data to verify the validity of this 
model. Next, we need to calculate the specific band 
signal energy. Suppose E is the energy of the specific 
band signal. 
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where k is the length of the band sample signal. By 
calculation, the value of the vibration energy of each 
vibration signal detection time, as shown in Figure 3. As 
we can see from the figure rising trend of energy, it can 
be a good characterization of the fault condition. 

 Figure 3. Gearbox vibration energy. 

According particle filter model simulation using 
MATLAB can get the remaining life of the gearbox 
probability density function, shown in Figure 4. Set the 
start time forecast t=0. 

 
Figure 4.The remaining life of probability density 
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