CO₂ Emission Reduction for Power System Based on Total Emission Control of CO₂ (II): A Case Study

Sun Xiao-guang Yingkou Environmental Assessment Co., Ltd Yingkou, Liaoning, China

Zhang Dan Northeast Electric Power Design Institute Changchun, Jilin, China

Abstract—Power industry as the main source of CO_2 emissions, is facing tremendous challenge of CO_2 emission reduction during the periods of "12th Five-year" and "13th Five-year". How to maximize the reduction of power CO_2 emissions under the premise of regional economic development and energy requirements is the significant manage ment objective for administrative department.

In this study, a mixed integer stochastic chance-constraint programming model based on CO_2 emission reduction from power industry is applied to the power system in Heilongjiang province, in order to obtain the CO_2 emission reduction schemes of energy conservation, reduction project and power structure adjustment in Heilongjiang province during the periods of the "12th Five-year" and "13th Five-year".

According to the model calculation and the results analysis, the power CO_2 emission growth in periods of the "12th Five-year" and "13th Five-year" are less than 23.82% and 20.13% respectively, significantly lower than the regional CO_2 emission growth. It means the power industry has made a great contribution to CO_2 emission reduction in Heilongjiang province. Meanwhile, the results of model application show that the developed model can meet the management target of maximizing the reduction of power CO_2 emissions, and provide reasonable reference to the administrative department.

Keywords: CO_2 emission reduction; energy conservation; carbon capture and storage; generating expansion planning

I. INTRODUCTION

On November 26, 2009, Chinese government has officially announced actions to control greenhouse gas emissions targetthat is to reduce 40%-45% CO₂ emissions per unit of GDP by 2020 from the 2005 level. Power industry as the main source of CO₂emissions is the key object to reduce CO₂emissions in China.By making reasonableplan to maximize the CO₂ emission reduction and implement low-carbon power is the only way for the sustainable development of the power industry, and of great importance to achieve the overall objective of CO₂ emission reductioninChina[1].

Li Chao-ci* Resource and Environment Research Academy, North China Electric Power University Beijing, China (Corresponding Author) chaocili@163.com

The relevant scholars hascarried out a series of research on China's CO_2 emissions control [2-9]. Although the achievement is diversified, the overall lack of the angle of the collaborative research on energy conservation, CO_2 reduction project and power structure adjustment.

The researchers in the article $^{\circ}CO_2$ Emission Reduction for Power System Based on Total Emission Control of CO_2 (I): Modeling", regards the maximum reduction of CO_2 emissions from power industry during the planning phase through energy conservation, CO_2 reduction project and power structure adjustment as the objective function, a mixed integer stochastic chance-constraint programming model has been developed. In this paper, the established model application research is proceeded, and takes power system in Heilongjiang province as an example.

II. OVERVIEW OF THE CASE STUDY SYSTEM

Consideringperiods of "12th Five-year" and "13th Five-year" (2011-2015 is the first period and 2016-2020 is the second period), The planning periodis ten years.

By the end of 2010, the total installed power generating capacity of Heilongjiang province about 21.35 million kW, and the installed capacity of coal-fired generating units 16.97 million kW, account for 91% of the total. In addition, the installed capacity of wind power and hydropower are 2.4 million kW and 0.95 million kW respectively. The CO_2 emission control targets planning periodare shown in table I.

Planning period		GDP (billion RMB) (billion RMB) (billion RMB) (billion RMB) (billion RMB) (billion RMB) (billion RMB) (billion RMB)		Falling target (%)	CO2total emission (million ton)	
Base year	2010	10235	2.83	/	28989	
Target year	2015	18038	2.38	16	42880	
Target year	2020	27753	1.95	18	54100	

TABLE I. TOTALAMOUNT CONTROL TARGRT BAESD ON PER UNIT OF GDP CO2EMISSIONS INTENSITY

According to the statistical yearbook data of power industry in Heilongjiang province, the power consumption statistics from 2000 to 2012 is shown in table II. Through the Crystal software, by applying the Monte Carlo stochastic simulationmethod, regional electricity consumption probability distribution can be simulated s shown in Fig. 1.

 TABLE II.
 ELETRICITY CONSUMPTION OFHEILONGJIANG PROVINCE FROM 2000-2012. (Unit: hundred million/kW·h)

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
350.73	371 <i>5</i> 2	382.07	391.57	41295	525.5	555.9	597	628.9	669.9	688.7	747.8	802

The cumulativeelectricityprobability distributioncan be obtained through regional electricity probability distribution. This section will optimize targets of CO2 emission reduction of energy conservation, reduction project and power structure adjustment in Heilongjiang power system during the planning periods under three levels of default probability (0.01, 0.03,0.05).

Figure 1. Regional electricity probability distribution.

III. RESULTS AND DISCUSSION

A. CO₂ Emission Reduction of Energy Conservation

According to the planning results, CO_2 emission reduction through the energy conservation in the first planning period is 1.5772 million tons, and further reduced 1.3266 million tons in the second period.

B. CO₂ Emission Reduction of Reduction Project

"12thFive-year" period, as a result of CCS technology is still in the stage of development, cost and energy consumption is higher, does not yet have the application level to industrialization. As issued by the ministry of science and the "12thFive-year" national carbon capture use and storage of science and technology development plan ", by the end of the "12thFive-year", breakthrough a batch of carbon capture, utilization and storage (CCUS) basic theory and key technologies, realize cost and energy consumption significantly reduce, form a megaton CCUS system design and integration capabilities[10], CCS is expected to be applied in"13thFive-year" period.

According to the result of model calculation, " 13^{th} Five-year" period in each level of the probability of default, CO₂ emission reduction is 4.1425 million tons, 3.8257 million tons and 3.8257 million tons by adopting CCS technology, involving coal unit 1.465 million kW, 1.3602 million kW and 1.3078 million kW.

C. CO₂ Emission Reduction of Structure Adjustment

CO₂structure emission reduction is relative reduction, raising the proportion of clean energy power generating by adjusting the power structure, and indirectly reducingCO₂ emissions. CO₂structure emission reduction under default probability levels in each planning period is shown in the table III.

In each default probability level, CO_2 structure emission reduction is 6.5185 million tons in the first planning period through the development of clean energy generating units, the second planning period reduce CO_2 emission42.363 million tons relatively. Due to nuclear power get development in the second planning period, so CO_2 relative emission reduction in the second planning period is significantly higher than the first planning period.

In particular, CO_2 emission reduction of the coal power and gas power in the planning period in the table III in bold is negative, indicating CO_2 emissionsis new incremental.

Generating capacity of thermal power and clean energy power during each planning period under default probability levels is shown in Fig. 2.

г ш	CO GERLICEURE EN ACCIONA REDUCTION REQUITE DU MANDIC REDUCE
JE III.	CO ₂ STRUCTURE EMISSIONS REDUCTION RESULTS IN PLANNING PERIOD

	IABLE III.	002011100	JIOKE LM		Beenen					
Default levels	Relative	Planning period of "12 th Five-year"								
	reduction(ten thousand tons)	Coal power	Gas power	Water power	Wind power	Photovoltaic power	Biomass power	Geothermal power	Nuclear power	
0.01	651.85	-3507.46	-38.78	97.09	288.00	64.46	198.81	3.48	0	
0.03	651.85	-2869.74	-14.45	97.09	288.00	64.46	198.81	3.48	0	
0.05	651.85	-2550.88	-8.55	97.09	288.00	64.46	198.81	3.48	0	
Default	Relative	Planning period of "13 th Five-year" Relative								
levels	Relative									
levels	reduction (ten thousand tons)	Coal power	Gas power	Water power	Wind power	Photovoltaic power	Biomass power	Geothermal power	Nuclear power	
levels	reduction (ten thousand tons)	Coal power -22.41	Gas power 0	Water power 269.70	Wind power 630.00	Photovoltaic power 122.78	Biomass power 441.81	Geothermal power 6.97	Nuclear power 2765.04	
Definition levels 0.01 0.03	reduction (ten thousand tons) 4236.30 4236.30	Coal power -22.41 -22.41	Gas power 0	<i>Water</i> <i>power</i> 269.70 269.70	Wind power 630.00 630.00	Photovoltaic power 122.78 122.78	<i>Biomass</i> <i>power</i> 441.81 441.81	Geothermal power 6.97 6.97	<i>Nuclear</i> <i>power</i> 2765.04 2765.04	

Figure 2. Thermal power and clean energy power generatingcapacity of every planning period under default probability levels. (Unit:ten thousand kW)

IV. SUMMARY

paper, a mixed integer stochastic In this chance-constraint programming model based on CO₂ emission reduction from power industry through ways of energy conservation, reduction project and power structure adjustment is applied to the power system in Heilongjiang province. According to the model calculation and the results analysis, CO₂ emission control targets of energy conservation, reduction project and power structure adjustment of Heilongjiang province during the periods of the "12thFive-year" and "13thFive-year" are obtained

Through the model recommendation, power CO₂ emissiongrowth in periods of the "12th Five-year" and "13th Five-year" are less than 23.82% and 20.13% respectively, significantly lower than the regional CO₂ emission growth, which are 47.92% and 86.62%. That is to say, the power industry has made great contribution to CO₂ emission reduction. Meanwhile, the results show that the developed model canmeetthe management target of maximizing the reduction of power CO₂ emissions, under the premise of regional economic development and energy requirements, which can provide reasonable reference to the administrative department.

REFERENCES

- Zhong Shi-ming. Another theory of "low-carbon economy" and [1] the electric power industry[J].District Heating, 2013, (5):1-7.
- Gu He-iun. Cao Jie. Advance of research on human activities on [2] CO2 emissions [J]. Yuejiang Academic Journal, 2010, (1): 48-54.
- Jin San-lin. The characteristics, trends and policy orientation of [3] carbon dioxide emissions in China[J].Northern Economy, 2010,(4):4-7.
- An Jing-wei. Discussion on he application of the post-combustion [4] carbon capture for the thermal power plant [J]. Heilongjiang Electric Power, 2010, 32(1): 47-49.
- Jiang Li-li. Analysis and comparison of current measures for [5] carbon dioxide emission mitigation [J]. Energy Research and Information, 2010, 26 (1): 15-20.
- [6] Fan Ying, Zhang Xiao-bing, Zhu Lei. Estimating the macroeconomic cost of CO2Emission abatement in China based on

multi-objective programming[J]. Advances in Climate Change Research, 2010, 6(2): 130-135.

- [7] Li Zhong-min, Qing Dong-rui. Economic growth and carbon dioxide decoupling empirical research - regard Shanxi Province as an example[J]. Fujian BBS, 2010, (2): 67-72.
- [8] Jun-Ki Choi, BhavikR.Bakshi, Timothy Haab. Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach [J]. Energy Policy, 2010, 38: 3527-3536.
- [9] Jin San-lin. The main characteristics and emissions path of China's carbon dioxide emissions[J]. Development Research, 2010, (5):27-30.
- [10] The notice ofministry of science and technology about printing and distributing "twelfth five-year" national carbon capture use and storage technology development special planning [EB/OL]. [2013-03-11]. http://www.gov.cn/zwgk/2013-03/11/content_2351242.html.