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Abstract-Making non-stationary random excitation in 
automobile vibration system change into stationary one is 
that the sample function of random excitation studied is 
made into a product of two functions, one of which is a 
definite function, called observation function, the other is 
stationary random process, called stationary random sample 
function. This article presented the necessary condition on 
which the observation function exists and the calculating 
formula of it, providing a theorems basis for the further 
research about non-stationary random vibration of 
automobile systems . 
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I. THREE THEOREMS 
Changing non-stationary random excitation change 

into stationary one is that the sample function of random 
excitation studied is made into a product of two functions.  
For one dimension non-stationary excitation  ̅( ), we can 
get: 
  ̅( )=g ( t ) ̅( )                     (1) 

 
“―”denotes random vibration excitation. 
For multiple dimensions, 
 

  ( ) = 

⎩⎪⎨
⎪⎧   ( )   ( )⋯⋯⋯   ( )⎭⎪⎬

⎪⎫
 

 
 
Can get  
 

⎩⎪⎨
⎪⎧   ( )   ( )⋯⋯⋯   ( )⎭⎪⎬

⎪⎫ =     ( ) ⋯ 0⋮ ⋱ ⋮0 ⋯   ( ) ⎩⎪⎨
⎪⎧     ( )     ( )⋯⋯⋯     ( )⎭⎪⎬

⎪⎫                     (2) 

  ( ) =    ( ) ⋯ 0⋮ ⋱ ⋮0 ⋯   ( )    

 

   (t)= 
⎩⎪⎨
⎪⎧     ( )     ( )⋯⋯⋯     ( )⎭⎪⎬

⎪⎫
 

 
Simply, 
 
   ( ) =  ( ).  (t) 
 
  ( ) or G(t) is a definite function or a definite matrix.   ( ))>0.  G(t) is a matrix which can be inversed.  ̅(t) or   (t)  is weak stationary random excitation. So the key 
problem is how the  ( ) or G(t) is designed. 
Theorem 1  
In one dimensional random process, the necessary 
conditions on which  ( ) exist is 
 

1.   (t)≠ 0,    (t)≠ 0                                 
(3) 

2.    ( ) = C.  (t)                                 
(4) 

   (t) presents the variance of  ̅( ),   (t) is presents the 
mean values of  ̅( ).   
Demonstrations 
 From 
 
  ̅( )=g ( t ). ̅(t),  
 
Have 
   (t)=  ( ) .  ( ),    ( ) presents the variance of  ̅(t) 

   (t)=g(t).  (t),        (t) presents the mean values of  ̅(t) 
 

Or 
   (t)=    (t)/g(t) 

   ( ) =   (t)/ ( )  
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A cording to the nature of weak stationary random 
excitation, we can get  
      ( ) =  ( )   ̇( ) − 2 ( ) ̇( )  (t) ( ) = 0 

 
Thus 
  ( )   ̇( )− 2 ( ) ̇( )  (t) = 0 
 
In case of   (t) > 0, 
  ̇( ) −   ̇( )2  (t)  ( ) = 0 

g(t)=   ∫   ̇( )   ̇( )  =          ( ) 
                              =      (t)               

(5) 
 

From   (t)=    (t)/g(t)   
According to the nature of weak stationary random 
excitation, we obtain 
      (t) =  ( )  ̇( )  ̇( )  ( ) ( )  = 0 

  ( )  ̇( ) −  ̇( )  (t) = 0 
 

Here ask for   (t) ≠ 0, then combining eq.(5) 
 

g(t)=    ∫  ̇( )  ( )  =     (t) 
                   =        (t)                                                  (6) 
 

Thus     (t) = C.  (t), C=      , C is a constant number. 
 

Theorem 2  
In multiple-dimensional random excitation   ( ),     ( )  ≠ 0, ( ≠  ), the necessary conditions on which 
G(t) exist is 
 1.     ( )  ≠ 0,    (t) ≠ 0 

 
2. α

  ̇( )    ( )  + β   ̇( )    ( )  + γ
  ̇( )    ( )   = 0 

                          
(
α  β  γ are constants which are not egual to zero simultaneously  ) 

 
3.     ( )   =    (t)    (i=1,2,3 ⋯⋯ n), 

   ( ) is the variance matrix  of   ( ) ,   ( )  is the 
mean values of   ( ).   
If   ( )  = 0 ( ≠  ), only condition 1 and 3 can be 
considered. 
Demonstrations.  
From  

  ( ) =  ( )  (t), 
 

Have 
                                                    ( ) =  ( )  ( )  ( )            
(7)            (t) =   ( )  (t)                
(8) 

 
From eq. (7),  
    ( )  =  ( )  / ( )  ( )   

Following the nature of stationary random excitation, 
      ( )=   ( )  ( ) ̇ ( )  −   ( )      ( )  ( ) /    ( )   ( )  

                                   = 0 
   ( ) ≠ 0, ( = 1,2,3 ⋯⋯ ) 

 
Therefore 
    ( )  ( ) ̇ ( )  −  ( )    ̇ ( )  ( ) +   ( ) ̇ ( ) =0      (9) 

 
Let i =  , eq. (9) becomes  
   ( )  ̇ ( )  − 2  ( )    ( ) ̇ ( ) = 0                     

(10) 
 

Ask for   ( )  ≠ 0,  hense  ̇ ( ) −  ̇ ( )  2  ( )    ( ) = 0 

   ( ) =    ∫  ̇ ( )     ( )      =      ( )                  
(11) 

 ( = 1,2,3 ⋯⋯ )                   
 
In case of   ( )  ≠ 0,  take eq.(11) into eq.(9) and get 
              ̇ ( )     ( )    ( )  −  ( )          ( )    ( )      ̇ ( )   +        ( )    ( )      ̇ ( )     =0 

 
                                                      

(12) 
 

Since                   are arbitrary constants, through 
simplifying, eq.(12) can be written as  
 

α
  ̇( )    ( )  + β   ̇( )    ( )  + γ

  ̇( )    ( )   = 0                 
(13) 
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α  β  γ are constants which are not egual to zero  simultaneously   
 
From   ( ) =   ( )  ( ) , have 
    ( ) =   ( )  ( )  
      ( ) =   ( )   ( )          ( ) ≠ 0, ( = 1,2,3 ⋯⋯ ) 
According to the nature of stationary random excitation, 
get       ( ) = 0 
Taking eq.(11) into account, by the same way as we 
demonstrate Theorem 1, we have 
    ( )   =    (t)  

     ( )  ≠ 0,    (t) ≠ 0   ( i =1, 2, 3 ⋯⋯ )                                  (14) 
 

If     ( )  = 0  ( ≠ j), only eq.(14) is necessary. 
Theorem 3 In case Theorem 1 or Theorem 2 is met, 
definite function g(t) or matrix  ( ) can be calculated as 
below 

 
1.  ( ) =     ( )  or  ( ) =    ( ) 

2.   ( ) =      ( )   or   ( ) =     (t)            are arbitrary constants 
When we demonstrate Theorem 1 or Theorem 2, 
Theorem 3 is proved simultaneously. 
 Example  
Take a two dimensional random excitation  
    ̅( )  ̅( ) =    ̅                
 
If    ≠ 0,    ≠ 0 this random excitation is proved to 
meet the Theorem 1, thus 
   ( ) =      ( )  =               ( ) =      ( )  =             
          is the variance of  ̅ or     
 
Fig. (a) and Fig. (b) are vibration model of vehicle.    

 
 

 
Simply, vibration model of vehicle can described as（ref.1） 
 

            ̈+C  ̇+K  =                                  
(15) 

 

If    =    ̅( )  ̅( )         ̅ and      are not relative 

random number 
 
Have 
    =                          
 
So   ̈        ̇       can be calculated easily in (15), 
which are important for the vehicle design. 
 
 
 

II. RESULT AND DISCUSION 
Now we see, the condition about making 
multi-dimensional non-stationary random process change 
stationary one is more harshly than that about making one 
dimensional non-stationary random process change 
stationary one. One dimensional non-stationary random 
process is a special case of the multi-dimensional 
non-stationary random process. The results provided in 
this article are the same with those derived from ref.2 
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