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Abstract—In this paper, the construction method of
common measurement matrices is studied, adaptability of
common measurement matrices for mechanical vibration
signal is analyzed. Typical measurement matrices are
selected from commonly used measurement matrices,
Gaussian random measurement matrix and Bernoulli
random measurement matrix are chosen from totally
random measurement matrices, Circulant measurement
matrix and Toeplitz measurement matrix are selected from
deterministic matrices, partially random Fourier
measurement matrix and Hadamard matrix are chosen from
deterministic measurement matrices. The sensing
performance of common measurement matrices for
mechanical vibration signal is evaluated from the two
perspective of reconstruction error and memory space. The
simulation results show that two kinds of complete random
matrices, Gaussian and Bernoulli matrices, can exactly
reconstruct original vibration signal, but they occupy large
memory space; deterministic matrices, Circulant and
Toeplitz matrices, although need fewer memory space,
obtained measurements which do not have information of
global vibration signal lead to lower reconstruction results;
partially random Fourier matrix is extremely coherent with
sparse transforming base of vibration signal, so it has not
exact result in the process of reconstructing original
vibration signal, the requirement of Exponentiation of 2
seriously restrict its application.

Keywords-mechanical vibration signal; comprssed sensing;
measurement matrices; sparse decomposition; reconstruction
algorithm;

I. INTRODUCTION

Mechanical vibration signal contains a lot of
information of equipment in the work process, on-line
monitor, collection and extracting useful information of
machinery vibration signal is a key technology in
mechanical engineering field, especially in the fault
diagnosis and remote fault diagnosis technology[1][2].

Internal mechanism and feature of machine is further
mastered, theoretical and technological support of
designing and exploiting mechanical equipment is
provided via these works. However, with the increasing
development of mechanical industry and constantly
enhancement of actual manufacturing demand, the trend of
machinery equipment in large-scale and complete set is
getting inevitable, vibrational frequency is becoming
increasingly higher and emerging non-linear, non-
stationary since collision, velocity jump, and structural
distortion and so on are occurred in the work process.
What is more, with the development of mechanical
vibration test towards integration, high speed, succession,
and networking, the vast amounts of sampling data is
generated based on Shannon-Nyquist sampling theory, the
real time transmission and synchronous storage of these
sampling data are becoming the urgent problems of cost
and engineering technology. Compressed Sensing can
guarantee the original structure of signal with non-linear
projection and apply into sampling of vibrational signal,
this can sample vibrational signal with sub-Nyquist rate
under the condition of without losing vibrational
information[3].

Measurement matrices play a vital role in compressed
sampling vibration signal because it is responsible for
sampling signal. The performance of measurement
matrices is critical factor which can guarantee
measurements of containing global information. Null
Space Property(NSP)[4], Spark[5], Restricted Isometry
Property(RIP)[6], Incoherence[7-10] are the important criteria
which describe the performance of measurement matrices.
Measurement matrices if only satisfy one of the criteria,
the recovery of original signal is achieved by
reconstruction algorithms[11].
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II. THE CONSTRUCTION METHOD OF COMMON
MEASUREMENT MATRICES

A. Gaussian random matrix
Gaussian random matrix was not only presented firstly

in compressed sensing, but also widely used measurement
matrix. Its construction process is as follows:

The matrix M NR  ， its
entries ,( ( 1, 2, , ; 1, 2, , ))i j i M j N    obey Gaussian
distribution.

Related studies show that Gaussian random
measurement matrix satisfies the performance requirement
of measurement the matrix.

B. Bernoulli random matrix
The construction process of Bernoulli random matrix is

as follows: generating matrix M NR  , where its
entries ,( ( 1, 2, , ; 1, 2, , ))i j i M j N    obey Bernoulli
distribution, the value of entries is / 1  ,

,

1/ 1/ 2
:

1/ 1/ 2
i j

M prob
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Because the entries of Bernoulli random matrix have
two state, so Bernoulli random matrix is also called binary
random matrix.

C. Partially random Fourier matrix
First, generating Fourier matrix N N

NW R  , then
randomly selecting M rows from Fourier matrix, finally
the selected M rows form measurement matrix M NR  ,
this forming matrix is called partially random Fourier
matrix
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Where exp( 2 / )W i N  , 1/ N denotes
normalization factor

Partially random Fourier matrix only is used to sense
time sparse signal because partially random Fourier matrix
is incoherence with time sparse signal. However, it is
extremely rare that the real word signal is time sparse
signal. Therefore, the application of partially random
Fourier matrix is restricted vastly. In addition,
reconstructed mechanical vibration signal is not exact
when selecting Fourier matrix as the sparse transform base
and partially random Fourier matrix as the measurement
matrix based on incoherence theory.

D. Partially random Hadamard matrix
First generating Hadamard matrix N N

NH R  , then
randomly selecting M rows from Hadamard matrix, finally
the selected M rows form measurement matrix M NR  ,
this forming matrix is called partially random Hadamard
matrix.

E. Circulant matrix
The type of Circulant matrix is as follows:
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Where 1{ }N
i ia  obey Bernoulli distribution.

F. Toeplitz matrix
The form of Toeplitz matrix is as follows:
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(4)

Where 1{ }N
i ia  obey Bernoulli distribution.

III. SPARSITY ANALYSIS FOR VIBRATION SIGNAL

Bearing designation 6205-2RS is studied, the whole
feature of roll bearing vibration signal is represented with
work frequency, the main doubling frequency and
fractional frequency, amplitude vibration and impact
vibration is coming into being when existing machinery
fault, the vibration signal model of bearing outer ring is
established as follows:
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Where rf ——rotate frequency

ir
A ——amplitude of harmonic vibration

ir
 ——phase of harmonic vibration

of ——fault frequency with outer ring

jo
A ——amplitude of harmonic vibration with outer

ring fault
jo

 ——phase of harmonic vibration with outer ring
fault

cf ——carrier frequency with outer ring fault

IA —— amplitude of impose decay vibration with
outer ring fault

I ——phase of impose decay vibration with outer
ring fault

 ——decay coefficient
' 1mod( , )

o

t t
f

 ——time of impose decay

Taking bearing designation 6205-2RS as an example,
its inner diameter 1 25mmd  , external
diameter 2 52mmd  , rolling element
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diameter 3 7.9mmd  , contact angle 0.67rad  , rolling
element number 9z  , working frequency 30Hzrf  ,
sampling frequency 1024Hzsf  .So based on the
following computational formula of outer ring fault
frequency.

3

2 1

1 1 cos
2o r

df z f
d d


 

       
(6)

outer ring fault frequency 0 104.03Hzf  is obtained,
when outer ring fault is occurred, supposed carrier
frequency 3000Hzcf  . m 3 , n 5 , ( 1, 2,3)riA i  ,

( 1, 2,3,4,5)ojA j  and IA are0.1,0.2,0.3,0.3,0.4,0.33,0.2,0.
1,0.38,respectively, ( 1, 2,3)ri i  , ( 1, 2,3,4,5)oj j  and

I are0,3,2.5,0,2,6,4,4.5,3.3respectively, decay
coefficient 800  .The outer ring vibration model of
6205-2RS is specified as follows:

( ) 0.1 cos(2 29.17 ) 0.2 cos(2 2 29.17 3)
0.3 cos(2 3 29.17 2.5) 0.3 cos(2 107.75 )
0.4 cos(2 2 107.75 2) 0.33 cos(2 3 107.75 6)
0.2 cos(2 4 107.75 4) 0.1 cos(2 5 107.75 4.5)

0
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t t
t t
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(a) time domain waveform

(b) discrete Fourier transform coefficients

(c) The amplitude of Fourier transform coefficients as a function of
freqrency

Figure 1. Fourier coefficients of vibration signal

The time domain waveform of vibration signal is given
in Figure 1(a), the Fourier coefficients is illustrated in
Figure 1(b), it can be seen from Figure 1(b) and Tab 1 that
most of Fourier coefficients amplitude ( ( ) 3f   ) are a
small amount, the ordering result of Fourier coefficients
amplitude is illustrated in Figure 1(c) which shows that
coefficients decay and trend to zero in form of index. This
explains that rolling bearing is a kind of approximately
sparse signal in Fourier domain.

TABLE I. THE DISTRIBUTION OF FOURIER COEFFICIENTS

Fourier
coefficients ( )f ( ) 3 f ( ) 3 f

amount 134 378

IV. SIMULATION AND RESULTS

The number of measurements M is at least double to
sparsity k , namely 2M k , sparsity k is equal to 134
via analyzing sparsity of vibration signal, therefore,
measurements M is obtained by 268, simulation
measurements are divide into two parts in order to test and
verify, one part is less than 268, namely 250 and 260 ,the
other is greater than 268, namely a sequence of
268,270, ,290, reconstruction algorithms is adopted by
orthogonal matching pursuit.

Taking as an example of measurement matrix size
268 512 , memory space of various measurement
matrices is analyzed. Every entry of matrices need one
space, namely 8bit, all entries of Gaussian random matrix
are mutual independence, calculated mode of memory
space is 268 512 /1024 134  KB, Bernoulli random
matrix is completely similar to Gaussian random matrix;
Circulant matrix only needs one line of random elements
based on its construction process, so its memory space is
512 /1024 0.5 KB, while Toeplitz matrix needs one line
and one column of random entries so its memory space is
(268 512) /1024 0.7617  KB; Partially random Fourier
matrix is obtained by randomly selecting deterministic
Fourier matrix, so its memory space is
268/1024 0.2617 KB, partially random Hadamard
matrix is completely similar to partially random Fourier
matrix.
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Figure 2. Reconstruction error as a function of number of
measurements for random matrices

Figure 3. Reconstruction error as a function of number of
measurements for deterministic matrices

Figure 4. Reconstruction error as a function of number of measurements for partially random matrices

Figure 5. Reconstruction error as a function of number of measurements for common measurement matrices
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TABLE II. RECONSTRUCTION ERROR

Number of
measurements 252 260 268 276 284 292

Gaussian matrix 2.3992e+01 4.7888 1.1375e-11 4.4370e-13 4.1585e-13 3.9611e-13
Bernoulli matrix 6.2390 7.7384 8.2815e-12 4.5387e-13 3.9057e-13 4.2757e-13
Circulant matrix 2.1505e+01 2.1238e+01 0.9324 0.6491 0.5676 0.7188
Toeplitz matrix 1.3196e+01 2.1137 7.0710e-01 0.7164 0.6060 0.5949
Partially Fourier

matrix 4.1397e+16 1.3082e+16 5.9335e-01 0.5405 0.5500 0.5673

Partially Hadamard 5.1945 2.4506 5.5204 0.7275 0.5766 0.5391

TABLE III. MEMORY SPACE

Measurement matrices Gaussian
matrix

Bernoulli
matrix

Circulant
matrix

Toeplitz
matrix

Partially
Fourier

Partially
Hadamard

Memory space KB 134.0000 134.0000 0.5000 0.7617 0.2617 0.2617
It can be seen from Figure 5 and Tab 3 that the

reconstruction error of common measurement matrices as
the number of measurement increase overall,
reconstruction error radically decrease when the number of
measurement is equal to 268 because the number of
measurement reach the reconstruction needed minimum
amount. This also verifies that theoretical requested
minimum measurement number. However, the decrease of
reconstruction error is not apparent with the further
increase of measurement number. Random measurement
matrix compressed sensing mechanical vibration signal
have exact reconstruction accuracy, but relatively need
most memory space; Deterministic matrix and partially
random matrix need fewer memory space, but do not have
better reconstruction accuracy and sometimes even failure.

V. CONCLUSION

Adaptability of common measurement matrices for
mechanical vibration signal is analyzed in this paper. The
sensing performance of common measurement matrices
for mechanical vibration signal is evaluated from the two
perspective of reconstruction error and memory space.
Two kinds of complete random matrices, Gaussian and
Bernoulli matrices, can exactly reconstruct original
vibration signal, but they occupy large memory space;
Deterministic matrices, Circulant and Toeplitz matrices,
alt-hough need fewer memory space, obtained
measurements which do not have information of global
vibration signal lead to lower reconstruction results;
Partially random Fourier matrix is extremely coherent with
sparse transforming base of vibration signal, so it has not
exact result in the process of reconstructing original
vibration signal, the requirement of Exponentiation of 2
seriously restrict its application.
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