
Stealthy Information Leakage from Android
Smartphone through Screenshot and OCR

Yeon-kyung Kim
Department of Computer Engineering

Hannam University
Deajeon, Republic of Korea

kimyeonkyung.kr@gmail.com

Man-Hee Lee
Department of Computer Engineering

Hannam University
Deajeon, Republic of Korea

manheelee@hnu.kr

Han- Jea Yoon
Department of Computer Engineering

Hannam University
Deajoen, Republic of Korea
hanjae.karoha@gmail.com

Abstract—A large number of malicious apps focus on
stealing personal and financial information. It is very
important to detect such apps as early as possible in order to
prevent subsequent crimes. DroidBox incorporating
TaintDroid detects leakage of private information, IMEI
(International Mobile Station Equipment Identity) and IMSI
(International Mobile Subscriber Identity). DroidBox covers
many possible information leakage paths, but it is also
known that there are several paths to leak the information
without detection. We utilized one attack path, screen
bitmap memory, in order to propose a collection system that
retrieves IMEI and IMSI information through screenshot
image and extracts the information from the image by OCR
(Optical Character Recognition) automatically. Furthermore,
we found out that sans font showed very low recognition rate
while serif and mono showed relatively high recognition rate.
We also hid a screenshot activity from users. Therefore, the
proposed method can be used to leak any information
without worry of detection by DroidBox, users, text-based
packet inspections tools.

Keywords-DroidBox; TaintDroid; Taint; Android
Application analysis; Anti-taint;

I. INTRODUCTION

With increase of smart phone usage, malicious apps
also increase very rapidly. Smart phone can be
characterized by continued network connectivity, software
openness, and open app store, thus making smart phone
usage environment vulnerable to various security attacks.
Mobile apps fall into several categories: send SMS,
malfunction phones, use up battery, leak private and
financial information, and so on. Among various threats,
information leakage threat grows more critical because
people store almost everything from personal information
to business data as BYOD (Bring Your Own Device)
concept becomes more common.

Traditionally there are some methods to detect or
prevent such information leak malware. First, static
analysis investigates into execution codes without running

the code to see if application under investigation includes
executable paths to leak information. Second, in dynamic
analysis, application is run under test environments such as
a virtualized system where every single action of the
application can be recorded or monitored for further
analysis. Additionally, DRM (Digital Rights Management)
or DLP (Data Leakage Prevention) solutions can be
applied to track or detect how interesting data is used or
moved.

Due to the rapid increase of malware, dynamic analysis
that can be done automatically receives more attention
these days. Among many techniques used for dynamic
analysis, tainting analysis gives security analysts new
opportunities by providing detailed reports how data in the
system is used and processed. TaintDroid is almost the
first successful environment to analyze Android app with
flow analysis functionalities [3], and DroidBox
incorporating TaintDroid provides more useful
functionalities [4].

G. Sarwar et al. presented many side channel attack
methods to avoid flow analysis based detection [1]. In our
previous study, we performed a feasibility test for utilizing
one of the techniques, called bitmap text, to construct a
large scale private information collection system [6]. In
bitmap text skill, a malicious app first prints private
information on the screen as text format, then captures a
screenshot by accessing screen bitmap memory. Then, it
sends out the image to a predestined host, Since
TaintDroid does not provide tainting analysis on the
bitmap memory, this method can go unnoticed.

In this research, we implemented the proposed system.
In addition, we found out that character recognition rates
vary according to font types. As an engineering issue, we
tested three fonts, sans, serif, and mono, provided as
default fonts by Android system. sans font showed very a
low recognition rate while serif and mono showed a
relatively high recognition rate only with font size bigger
than 12.

International Conference on Chemical, Material and Food Engineering (CMFE-2015)

© 2015. The authors - Published by Atlantis Press 779

Finally, in some smart phones, we successfully hid a
screenshot activity from users. To capture a screenshot, the
information should be stored at screen bitmap to be shown
to users, inevitably resulting in user awareness of leaked
information. We used a simple technique to hide this
action from users by using a short delay between the
activity of printing texts on screen and subsequent activity.
In our experiments, 0.5 second is good enough both for
successfully capturing a screen image and for not showing
any texts on the screen. In conclusion, our method can help
retrieve any text information from smart phones without
being detected by DroidBox, users, and text-based packet
inspection tools.

II. RELATED WORK

In this section we give a brief overview of DroidBox,
side channel attack for DroidBox, and private information
collection system that we proposed in our previous study
[6].

A. DroidBox

DroidBox is a dynamic analysis tool for Android
application based on Linux, and Android kernel 4.1
version is modified for DroidBox [4]. Also it analyzes the
malicious applications by using sandbox and tainting
techniques based on TaintDroid [3]. When DroidBox
completes the analysis of malicious applications, it
provides analysis results with a Json file. This includes
network communications, file read/write operations,
information leakage, encryption module operations, etc. It
keeps tracking private information, IMEI and IMSI, to see
if the information is processed and sent outside of the
devices, called data sinks including file, network
connection, and SMS.

B. Diverting DroidBox Information Leakage Detection
Scheme

G. Sarwar et al. presented several methods to bypass
flow analysis based detection schemes of DroidBox [1].
First, control dependence is to copy tainted data without
direct assignment. Examples are simple encoding attack,
Count-to-X attack, and deliberate exception attack. Second,
trusted benign codes are used to divert flow analysis. The
main idea of this category is to utilize normal system
commands and files that are not traceable inside the code.
The authors introduced a system command attack and a
system-file hybrid attack. Finally, this paper explained
several side channel bypass techniques including the
bypass timing attack, file length attack, clipboard length
attack, bitmap cache attack, text scaling attack, direct
buffer attack, and remote control channel attack.

C. Private Information Collection System (PICS)

By using the fact that information leakage via screen
bitmap image is not detected by antivirus solution or
DroidBox, we proposed a private information collection
system in a simple client-server model as shown in Figure
1. Client apps that we developed for this system collect
IMEI value from mobile devices through GetDeviceID()
method of TelephonyManager, gains its bitmap image
using Drawing cache and getDrawingCache, and sends the
images to a main server. The main server receives and
stores the images and run an OCR module to recover IMEI
values from the images.

Figuer 2 is a part of DroidBox result generated when
our app sent an IMEI value to the main server. opennet and
sendnet sections show that some data was sent to a host
with 203.247.39.97 IP address and port number 22, but
dataleaks section shows nothing, meaning that there is no
information leakage. Therefore, we can confirm that it is
possible to bypass information leakage detection of
DroidBox as explained by [1].

FIGURE 1. SYSTEM DESIGN

"dataleaks": {},
........
"opennet": { "2.901952028274536": {“desthost":
"203.247.39.97", "destport": "22", "fd": "16" } },
"recvnet": { "3.098494052886963": { "data": "53", "host":
"Server IP", "port": "22", "type": "net read" },}},
........
"sendnet": { "3.011586904525757": {"data":
"5353482d322e302d4a5343482d302e312e35320a",
"desthost": "Server IP", "destport": "22", "fd": "16",
"operation": "send", "type": "net write"}}
........

FIGURE 2. DROIDBOX RESULT

III. PICS IMPLEMENTATION AND FONT

SELECTION

In this research, we first implemented PICS’s server.
Figure 3 shows detailed architecture of PICS. Server
consists of several modules including sftp server, DBMS,
and an OCR module. For field deployment of PICS, we
can modify the current architecture such as inserting an
intermediate server layer. If a server IP address or a
domain name is inserted in the binary code, the existence
of the server can be revealed and taken down easily. To
increase anonymity of client-server communication, the

intermediate layer can utilize well-known server’s blogs
where client apps can post image files so that the server
visits those blogs later for collecting the images.

780

We use pytesseract OCR module written in python[5].
At first, we expected character recognition rates do not
differ from font types, but we figured out there are big
recognition variations depending on font types and sizes.
So, we tried to find which combination of font and size is
the best for PICS. We use three fonts (sans, serif, mono)
provided by Android system as default fonts and increase
font size from one to 20. We performed three tests per a
combination of one font type and one font size, totally
performing 1,800 tests.

FIGURE 3. DETAILED ARCHITECTURE OF PICS

Figure 4 is a result of OCR rates of sans font. sans font

becomes recognizable from font size 13 (3.33%), and
shows the highest recognition rate at font size 19 (23.33%).

FIGURE 4. SANS OCR RATE

As shown in Figure 5, the OCR module begins to

recognize serif font from font size 10 (26.67%), and shows
the best recognition rate between 14 and 17, and at 20.

FIGURE 5. SERIF OCR RATE

mono font begins to be recognized from font size 9

(6.67%), and shows very high recognition rates from 14 to
18.

FIGURE 6. MONO OCR RATE GRAPH

In summary, sans font showed very low recognition

rates while serif and mono showed relatively high
recognition rates only with font size bigger than 12.
Another interesting finding is that the recognition rate does
not increase linearly as the font size increases. Since OCR
recognition algorithm is out of our research scope, we did
not seek for its reason, but we suppose that due to each
algorithm’s characteristics the bigger font size do not
always ensure the better recognition rate. Therefore, before
constructing PICS for real life, detail recognition tests
should be preceded.

IV. VISUAL DETECTION AVOIDANCE

Till now, we showed that it is hard to detect
information leakage using screenshot, but an application
user can easily do so because some texts possibly
including bank and personal information will be shown on
the screen and disappear shortly.

To solve this problem, we found a trick to take a
screenshot without showing anything on the screen. We
use an Android Activity that generates a full screen
window. We found that displaying a window needs some
delay before the window appears to users on the screen,
and when a new next activity is executed shortly after the
previous activity, the previous activity failed to appear on

781

the screen. Luckily enough, accessing bitmap memory and
retrieving screen image are possible.

In Figure 6, imei.setText() method makes this window
shown on the screen with IMEI information written in the
window. screenshot(capView) method captures the bitmap
image screenshot. For preventing the previous window
from appearing, we use a dummy intent i to make a new
activity on the screen. By executing startActivity(i) after
0.5 second, we successfully covers up the first window.

Please note that this trick does not always work for all
types of smart phones. Probably it depends on hardware or
software components. For this research, we tested Galaxy
S and Galaxy Nexus, and 0.5 second delay works very
well.

........
//setting IMEI in textbox
imei = (TextView) findViewById(R.id.textView2);
imei.setTextColor(Color.BLACK);
imei.setTypeface(str_font);
imei.setTextSize(cnt_size);
imei.setText(global_imei_string);
........
capView = getWindow().getDecorView();
screenshot(capView);
........
Intent i = new Intent(MainActivity.this, FakeActivity.class);
try {

Thread.sleep(500);
startActivity(i);
finish();
}
catch (Exception e) {

}
........

FIGURE 7. IMEI VALUE EXPOSURE PREVENTION TO THE USER

V. CONCLUSION

In this research, we proposed and implemented a
private information collection system stealthily retrieving
data via screens bitmap images. DroidBox, a de facto
standard dynamic flow analysis tool, cannot detect this
leakage since the screen bitmap is out of DroidBox’s
tracing scope. In constructing the server, we extract text
information from the image by OCR. We also found out
that sans font showed a very low recognition rate while
serif and mono showed a relatively high recognition rate
only with font size bigger than 12. In some smart phones,
we successfully hid a screenshot activity from users.
Therefore, the proposed method can be used to leak any
information without worry of detection by DroidBox, users,
and text-based packet inspection tools.

We are currently investigating into how DroidBox
traces private information even to bitmap memory and a
static analysis method to detect such Android apps.

REFERENCES
[1] G. Sarwar(Babil), Olivier Mehani, Roksana Boreli and Mohamed

Ali kaafar, “On the Effectiveness fo Dynamic Taint Analysis for
Protecting Against Private Information Leaks on Android-based
Devices,” NICTA Technical Report RT-7091, 2013

[2] S. Mori, CY Suen, K. Yamamoto, “Historical review of OCR
research and development,” IEEE 80(issue, 7), 1922, 1029-1058

[3] Willian Enck, Peter Gilbert, Byung-Gon Chun, Landon P.Cox, Jea-
Yeon Jung, Patrick McDaniel and Anmol N.Sheth, “TaintDroid:
An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” OSDI vol. 10, October 2010,
pp.225-270

[4] Michael Spreitzenbarth, Thomas Schreck, Florian Echtler, Daniel
Arp, Johannes Hoffmann, “Mobile-Sandbox: combining static and
dynamic analysis with machine-learning techniques,” DOI
10.1007/s10207-014-0250-0, 2014

[5] Pytesseract, https://pypi.python.org/pypi/pytesseract/0.1

[6] Yeon-Kyung Kim, Han-Jea Yoon, Man-Hee Lee, “Experiment of
Side Channel Attack for Diverting Data leak Detection by Taint
Analysis of DroidBox,” CISC-S’15, Jun 2015

[7] Lantz. P, “The Honeynet Project,” http://www.honeynet.org

[8] Lantz. P, “An Android Application Sandbox for Dynamic
Analysis,” Maters Thesis, Department of Electrical and
Information Technology, Sweden, Lund University, 2011

[9] Michael Spreizenbarth, Florian Echtler, Johannes Hoffmann,
“Mobile-Sandbox: Having a Deeper Look into Android
Applications,” SAC’13, March 2013

782

