An Empirical Study of Accounting Firm Scale and Legal Environment Influence on Audit Quality

Sima Honghao

Lanzhou University of Arts and Science, Gansu province, 730000

Keywords: Public accounting firm size; Audit quality; Legal environment; Empirical research

Abstract. China's overall weak legal system environment and clear regional legal system differences existing side by side provides the research background for us to study the relationship between accounting firm scale, legal environment and audit quality. In this paper, using the data of 2014, under China's unique legal environment background, classify according to accounting firm scale and background, take manageable accrued profit instead of actual audit quality, empirically testify the relationship between legal environment, firm size and audit quality.

With the development of market economy and particularity of certified public accountants work, audit quality directly relates to healthy development of capital market. The scale of accounting firms must, therefore, improve information quality as the premise, and large-scale development must also be on the basis of ensured audit quality. In our country, whether there is a difference between large and small audit quality, whether it relates to law environment, whether there are other influence factors, the academia has not yet been determined. And discuss the accounting problems in China shall consider China's national conditions. In general, the rule of law environment is weak in our country. From the angle of region, local legal environment development is not balanced. Will legal system differences in different areas, then, affect different size firm's audit quality?

I. ACCOUNTING FIRM SCALE MEASURE

In the study of accounting firm scale and audit quality, accounting firm can be divided into N big and not N big dichotomy, which is widely used in the literature at home and abroad. Especially in western developed countries, the division of N big and not N big is very stable.

A. Research design

1. Research methods

We choose to have clustering analysis with a strong objectivity to test classification results significantly and can comprehensively consider certified public accountants' indicators to analyze 2014 accounting firm situation.

2. Data collection

(1)Data selection indicators

In this paper also uses multiple indicators measure in the course of study.

(2) Data source

Data are from Shanghai stock exchange, Shenzhen stock exchange website as well as Accountants Accounting Firm Comprehensive Information Evaluation in 2014 certified by Chinese Institute of Certified Public Accountants.

(3) Descriptive statistics and correlation analysis

According to the data in Table 1.1, there is a big difference between accounting firms. Accounting firms' average market share is only 1.56%, and of all the indicators, in addition to customers and firms accountant number two indicators, the other four indicators are more than the average. Second, we can see that different statistical index system gets obvious accounting firm market share difference. This shows that there is large difference between the sizes of customers, and if the same accounting firm scales measure in accordance with different indicators, there are bigger differences.

	Ν	minimum	maximum	average	standard deviation
customer number	64	.064	6.877	1.5625	1.2467
Customer's main business income	64	.013	20.584	1.5625	3.7551
Customer total assets	64	.004	25.072	1.5625	5.2672
Customer equity	64	.010	27.894	1.5625	4.4068
The firm's total revenue	64	.133	17.652	1.5625	3.6029
Accountant office number	64	.622	7.586	1.5625	1.2259
Effective N (list state)	64				

Table 1.1 Accounting firm size proportion index information

Table 1.2 Correlation coefficient of accounting firm scale indicators

	Client quantity	Client business income	Total client property	Client sharehoder interests	Total office income	Office accounta nt quantity
customer number	1					
Customer revenue	.170	1				
Customer's total assets	.046	.955**	1			
Customer equity	.145	.978**	.953**	1		
Firm's total revenue	.112	.900**	.920**	.908**	1	
Accountants office number	.426**	.441**	.401**	.419**	.563**	1

* *. In. 01 level (double side) significant correlation.

Table 1.2 analyzes the variables relationship accounting firm scale, and it can be seen in the table that the correlation coefficient of accounting office account numbers and customer main business income, number of customers, clients, shareholders' equity, firm revenue, and customer total assets is 0.4, and is statistically significant at 0.01% level.

B. Clustering analysis results

Shown in Table 1.3, in all office categories, KPMG Huazhen, Deloitte HuaYong, Ernst &young Huaming, PWC Zhongtian are all alone, and are very significant distinguished from the other groups, suggesting that the big four firm have strong stability. These firms were divided into $6 \sim 8$ classes and single factor variance analysis is done respectively, and significant difference between the results of all kinds is below 1%.

		1	1	KPMG Huazhen
		2	1	Deloitte HuaYong
		3	2	Lixin, Elliot Yue
6cla	class cluste	4	58	Fujian Huaxing 58 firms and so on
SS	r	5	1	Ernst &young Huaming
		6	1	PWC Zhongtian
		Total	64	description: KPMG Huazhen 6 firms belongs to 5 classes in 6 classes
	effectiv	/e	64	
		1	8	7 classes in 8 eight firms such as Beijing Kyoto
		2	1	PWC Zhongtian
		3	2	Lixin, Elliot Yue
	Class	4	Deloitte HuaYong	
7cla ss	r	5	1	KPMG Huazhen
55		6	1	Ernst & Young Hua Ming
	7	7	50	Fujian Huaxing 58 firms and so on
		Total	64	decription: KPMG Huazhen six firms belong to 5 classes in 8 classes
	effectiv	/e	64	
		1	1	Ernst & Young Hua Ming
		2	11	Zhejiang Tian Jian, 11 firms
		3	2	Lixin, Elliot Yue
	1	4	45	Anhui maple 45 firms and so on
8cla	class cluste	5	1	Deloitte HuaYong
SS	r	6	1	KPMG Huazhen
		7	1	PWC Zhongtian
		8	2	Fujian Huaxing, Ernst & young Huaming
	Total			description: KPMG Huazhen six firms belong to5 classes in 8 classes.
	Effecti	ve	64	

Table 1.3 2014 Accounting firm clustering analysis results

II. THE EFFECTS OF ACCOUNTING FIRM SCALE AND LEGAL ENVIRONMENT ON AUDIT QUALITY

This paper specifies accounting firm scale by non " six big " and "six big" and substitutes earnings management degree variables by actual audit quality, researches whether accounting firm scale in our country in relatively weak law rule overall environment during the period of transition economy can be on behalf of audit quality, and at the same time, also examines if clear differences regional legal system has different impact on non " six big " and " six big" audit quality.

A. Research hypothesis

For now, the overall legal environment in China cannot make substantial effects on accounting firm's bad behavior; reduce audit quality and a lower risk of being punished, while the possibility of dismissal by customers for the independence is high.

Hypothesis 1: In the audit market under the background of the overall weak legal environment in our country, non-"six big" customers manipulating profit is as high as that of "six big".

The obvious difference in regional legal environment in our country is likely to have different influence on different sizes of certified public accountants.

Hypothesis 2: Whether "six big" customer sites legal environment is sound which can affect reduce of accrued profit manipulation. The more perfect legal environment, the lower "six big" customers can manipulate accrued profit. Regional legal environment change will not affect "six big" customers manipulating accrued profits.

B. Research design

1. Data sources and sample selection

Region legal difference quantitative data come from samples financial data in China's marketization index --regional market relative progress report and company information is from Shanghai stock exchange, Shenzhen stock exchange website.

2. Manipulate the accrued profit estimation

This paper adopts section Jones model and estimates the playable divisions accrued profits.

Cross section Jones model expression:

 $TAijt/Aijt-1=\alpha_{1}jt/Aijt-1+\alpha_{2}jt (\Delta REVijt/Aijt-1) +\alpha_{3}jt (PPEijt/Aijt-1) +\varepsilon_{1}jt$ (1)

Each variable in formula: Δ REV is the event difference between annual main business net income and net income of last year's main business; TA is the total accrued profit got by minus operating profit by net cash flow; PPE is the value of fixed assets, A is t - 1 total assets at the end of the year, j is industry, ϵ is residual error, I is specific company, and t - 1 and t are respectively last year event and this year event.

The non-manipulation accrued profit gets estimates by NDA expressed formula; manipulation accrued profit is DA.

3. Test model

This paper adopts the influence of model test foregoing assumptions overall legal environment background and regional difference legal system environment firm size on accrued profit manipulation.

Hypothesis 1 test model:

 $DAit=\beta 0+\beta 1 Sizeit+\beta 2 Leverageit+\beta 3 OCFit+\beta 4 AbsAccrit+\beta 5 Lossit+\beta 6 Big6+eit$

(2)

Assumption 2 test model

 $DAit=\beta 0+\beta 1 Sizeit+\beta 2 Leverageit+\beta 3 OCFit+\beta 4 AbsAccrit+\beta 5 Lossit$

+β6Indexit+β7Big6+β8Big6×Indexit+eit

(3)

Among them, Big6 is experimental variable. $\beta 0$ is intercept, $\beta 1 \sim \beta 8$ are coefficient, e is residual. DA is manipulating accrued profit. Index is on behalf of the regional legal environment Index. Big6 x Index is the joint impact of accounting firm scale and the legal system of environmental on earnings management. Size is scale of the company. Leverage is debt ratio. OCF is the ratio of total assets and net operating cash flow. AbsAccr is the absolute value of total accrued profit and total assets ratio.

Table 2.1 lists the sample's descriptive statistics, sample company average leverage coefficient is 0.482, the average size is 21.436, and in addition, the Loss mean value is 0.06, which shows that an average of 6% company loses. Table 2.2 and Table 2.3, respectively, are the "six big" group and non-"six big" description statistical information. It can be seen from the Table that non-"six big" customer's cash flow and assets are significantly lower than "six big" customer. At the same time, "six big" customer losses is higher than that of the "six big" losses.

	Ν	minimum	maximum	average	standard deviation
Size	1232	17.975	26.548	21.43631	1.087531
Leverage	1232	.000	4.035	.48227	.218135
OCF	1232	363	1.000	.05157	.095762
AbsAccr	1232	.000	2.065	.02465	.078694
Index	1232	2.79	16.61	8.8296	4.14551
Loss	1232	0	1	.06	.242
Effective N (list state)	1232				

Table 2.1 Whole samples description

Table 2.2 Six	group	description	statistics
---------------	-------	-------------	------------

	Ν	minimum	maximum	average	standard deviation
Size	168	17.97	26.55	21.8068	1.35120
Leverage	168	.00	4.03	.4951	.32998
OCF	168	29	1.00	.0574	.11412
AbsAccr	168	.00	.26	.0208	.03170
Index	168	2.79	16.61	11.1770	4.72686
Loss	168	.00	1.00	.0833	.27721
Effective N (list state)	168				

Table 2.3Non-"six big" description statistics

	Ν	minimum	maximum	average	standard deviation
Size	1064	18.03	25.02	21.3778	1.02844
Leverage	1064	.00	1.44	.4802	.19485
OCF	1064	36	1.00	.0507	.09256
AbsAccr	1064	.00	2.07	.0253	.08373
Index	1064	2.79	16.61	8.4590	3.92209
Loss	1064	.00	1.00	.0592	.23613
Effective N (list state)	1064				

C. Empirical results

1. Univariate analysis

Table 2.4 compares the manipulating accrued profit and its absolute value of "six big" and non-"six big". We can see from the Table that non-"six big" and "six big" manipulation accrued profit average are 0.0001 and 0.0009 respectively. Medians are 0.0024 and 0.0048 respectively. They have no statistically significant difference. The non-"six big" and "six big" manipulation accrued profits median between and absolute value mean are not significant difference. The preliminary supports hypothesis 1.

	U	" sample N = 168)	group	Non-"si	Non-"six big" sample group (N = 1064)		T test (double	Z test (double tail)
variable	median	avera ge	mean	median	standard deviation	mean	tail)	taii)
DA	0.0009	0.039 3	0.004 8	- 0.0001	0.0657	0.0024	0.2915	0.2915
DA	0.0264	0.029 2	0.016 7	0.0294	0.0587	0.0178	-1.0683	-1.0682

Table 2.4 The comparison between "six big" and non-"six big"

Table 2.5 and Table 2.6 are "six big" and non-"six big" firm correlation coefficients between the variables. It can be seen from the Table that "six big" and non-"six big" have showed a positive correlation between Index and manipulating accrued profit (DA) (0.095 and 0.090), indicating that the "six big" and non-"six big" groups legal environment change will not inhibit earnings management behavior of customers.

Table 2.5 Six indicator variable phase relationship

		DA	Size	Leverage	OCF	AbsAccr	Loss	Index
DA	Pearson	1	024	077	043	128	.009	.095
	correlation							
	Significant		.757	.321	.578	.099	.912	.223
	(double side)							
	N	168	168	168	168	168	168	168
Size	Pearson	024	1	065	046	.012	162*	.060
	correlation							
	Significant	.757		.405	.555	.877	.036	.440
	(double side)							
	N	168	168	168	168	168	168	168
Leverage	Pearson	077	065	1	.215**	050	035	122
-	correlation							
	Significant	.321	.405		.005	.516	.653	.115
	(double side)							
	N	168	168	168	168	168	168	168
OCF	Pearson	043	046	.215**	1	.022	138	121
	correlation							
	Significant	.578	.555	.005		.778	.075	.118
	(double side)							
	N	168	168	168	168	168	168	168
AbsAccr	Pearson	128	.012	050	.022	1	160*	035
	correlation							
	Significant	.099	.877	.516	.778		.038	.651
	(double side)							
	Ν	168	168	168	168	168	168	168
Loss	Pearson	.009	162*	035	138	160*	1	039
	correlation							
	Significant	.912	.036	.653	.075	.038		.620
	(double side)							
	N	168	168	168	168	168	168	168
Index	Pearson	.095	.060	122	121	035	039	1
	correlation							
	Significant	.223	.440	.115	.118	.651	.620	
	(double side)							
	N	168	168	168	168	168	168	168

*. At 0.05 level (double side).

* *. In. 01 level (double side).

Table 2.6 Six big indicator variable phase relationship

DASizeeOCFrLossIndexDAPearson correlation1.040166**004071*.019.090Significant (double side).187.000.901.021.547.003N10641064106410641064106410641064Size Pearson correlation.0401.177**.007.033.134**.012Significant (double side).187.000.815.288.000.691Pearson correlation.166**.177**1061*.026.080**.072*Significant (double side).000.000.047.389.009.018Significant (double side).004.0641064106410641064OCF Pearson correlation.004.007.061*.120**.120**.102**N10641064106410641064106410641064OCF Significant (double side).001.815.047.10.017.000.001N106410641064106410641064106410641064AbsAcer Significant (double side).021.288.389.017.120**.120*.010N1064106410641064106410641064106410641064AbsAcer Significant (double side).547.0			-		Leverag		AbsAcc		
Image: significant (double side)Image: side side)Image: side side side side side side side side			DA	Size	•		r	Loss	Index
Image: side Image: side <thimage: side<="" th=""> <thimage: side<="" th=""></thimage:></thimage:>	DA	Pearson correlation	1	.040	166**	004	071*	.019	.090
Size Image: Pearson correlation.0401.177**.007.033.134**.012Significant (double side).187.000.815.288.000.691N10641064106410641064106410641064Leverag e Significant (double side).166**.177**1.061*.026.080**.072*Pearson correlation.166**.177**1.047.389.009.018Significant (double side).000.000.041106410641064OCF Fearson correlation.004106410641064106410641064Significant (double side).901.815.047.017.000.001N10641064106410641064106410641064AbsAct Fearson correlation.071*.033.026.073*1.025.009Significant (double side).021.288.389.017.01610641064N106410641064106410641064106410641064Loss Fearson correlation.019.134**.080**.120**.0251.054Significant (double side).019.018.000.000.016106410641064Loss Fearson correlation.019.134**.080**.120**.0251.054 <t< td=""><td></td><td>U A</td><td></td><td>.187</td><td>.000</td><td>.901</td><td>.021</td><td>.547</td><td>.003</td></t<>		U A		.187	.000	.901	.021	.547	.003
Significant (double side).187.000.815.288.000.691N106410641064106410641064106410641064Leverag e Significant (double side).000.000.001.007.017.026.080**.072*Significant (double side).000.000.000.047.389.009.018OCF Fearson correlation.004106410641064106410641064N10641064106410641064106410641064OCF Significant (double side).001.007061*1.073*.120**<.102**		Ν	1064	1064	1064	1064	1064	1064	1064
$\frac{1}{1000} \text{ind} \text{ind}$	Size	Pearson correlation	.040	1	.177**	.007	033	134**	012
Leverag e Pearson correlation166**.177**1061*.026.080**072* e^{0} Significant (double side).000 .000.000.047.389.009.018 OCF Pearson correlation004106410641064106410641064 OCF Significant (double side).004.007061*1.073*120** OCF Significant (double side).901.815.047.017.000.001 OCF Significant (double side).901.815.047.017.000.001 OCF Significant (double side).901.815.047.016410641064 OCF Pearson correlation side).001.026.073*1025.102** OCF Significant (double side).021.288.389.017.416.761 OCF Significant (double side).019.134**.080**.120**.0251.054 OCF Significant (double side).019.134**.080**.120**.0251.078 OCF Significant (double side).547.000.009.000.416.0641064 OCF Significant (double side).094.018.001.761.078.078 OCF Significant (double side).003.691.018.001.761.078.078		U N	.187		.000	.815	.288	.000	.691
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		N	1064	1064	1064	1064	1064	1064	1064
$\frac{\text{Significant (double side)}}{\text{side)}} = \frac{.000}{.000} = \frac{.000}{.000} = \frac{.047}{.389} = \frac{.009}{.018} = \frac{.018}{.009} = \frac{.018}{.018}$ $\frac{\text{N}}{\text{N}} = \frac{1064}{1064} = \frac{1064}{1064} = \frac{1064}{1064} = \frac{1064}{1064} = \frac{1064}{1064} = \frac{1064}{1064} = \frac{1064}{.007} = \frac{.017}{.000} = \frac{.018}{.017} = \frac{.017}{.000} = \frac{.018}{.018}$ $\frac{\text{N}}{\text{Significant (double side)}} = \frac{.001}{.901} = \frac{.815}{.047} = \frac{.047}{.047} = \frac{.017}{.017} = \frac{.000}{.000} = \frac{.001}{.001} = \frac{.018}{.000} = \frac{.018}{.018} = \frac{.018}{.000} = \frac{.000}{.001} = \frac{.018}{.001} = \frac{.018}{.001} = \frac{.018}{.001} = \frac{.018}{.001} = \frac{.018}{.001} = \frac{.018}{.001} = \frac{.018}{.018} = \frac{.018}{.018} = \frac{.018}{.001} = \frac{.018}{.018} = \frac{.018}{$	Leverag	Pearson correlation	166**	.177**	1	061*	.026	.080**	072*
OCF Pearson correlationPearson correlation004.007061*1.073*120**.102**Significant (double side).901.815.0471.017.000.001N10641064106410641064106410641064AbsAccr Significant (double side).021.288.389.017.416.761Significant (double side).021.288.389.017.416.761N1064106410641064106410641064Loss Significant (double side).019.134**.080**120**.0251.054Loss Significant (double side).019.134**.080**102**.00510641064Loss Significant (double side).090.010.009.000.416.078.078Significant (double side).547.000.009.000.41610641064Index Significant (double side).090012.072*102**.009.0541Index Significant (double side).003.691.018.001.761.078.078	e		.000	.000		.047	.389	.009	.018
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ν	1064	1064	1064	1064	1064	1064	1064
$\frac{\text{side})}{\text{N}} \frac{1064}{1064} \frac{1064}{$	OCF	Pearson correlation	004	.007	061*	1	.073*	120**	102**
AbsAccr Pearson correlation071*033.026.073*1025009Significant (double side).021.288.389.017.416.761N10641064106410641064106410641064LossPearson correlation.019134**.080**120**0251054Significant (double side).547.000.009.000.416.078.078IndexPearson correlation.090012072*102**0090541Significant (double side).090.001.761.078.078.014.078			.901	.815	.047		.017	.000	.001
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ν	1064	1064	1064	1064	1064	1064	1064
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AbsAccr	Pearson correlation	071*	033	.026	.073*	1	025	009
LossPearson correlation.019 134^{**} .080** 120^{**} 025 1 054 Significant (double side).547.000.009.000.416.078N1064106410641064106410641064IndexPearson correlation.090 012 072^{*} 102^{**} 009 054 Significant (double side).003.691.018.001.761.078		0	.021	.288	.389	.017		.416	.761
Significant (double side) .547 .000 .009 .000 .416 .078 N 1064 </td <td></td> <td>Ν</td> <td>1064</td> <td>1064</td> <td>1064</td> <td>1064</td> <td>1064</td> <td>1064</td> <td>1064</td>		Ν	1064	1064	1064	1064	1064	1064	1064
side) Image: Side)	Loss	Pearson correlation	.019	134**	.080**	120**	025	1	054
Index Pearson correlation .090 012 072* 102** 009 054 1 Significant (double side) .003 .691 .018 .001 .761 .078		U I	.547	.000	.009	.000	.416		.078
Significant (double .003 .691 .018 .001 .761 .078		Ν	1064	1064	1064	1064	1064	1064	1064
side)	Index	Pearson correlation	.090	012	072*	102**	009	054	1
N 1064 1064 1064 1064 1064 1064 1064 1064		U	.003	.691	.018	.001	.761	.078	
		Ν	1064	1064	1064	1064	1064	1064	1064

* *. In. 01 level (double side).
*. At 0.05 levels (double side).

2. Multiple regression analysis

Variable	Regression coefficient	t
Constant	-0.043	-1.206
Size	0.003	1.805
Leverage	-0.043	-5.301
OCF	0.001	0.062
AbsAccr	-0.054	-2.395
Loss	0.008	1.05
Big6	-0.00002	-0.004
Observations	1232	
Adjusted R2	0.024	
F value	6.071	

Table 2.7 Multiple regression analysis of firm scale and relationship between earnings management

a. Dependent variable: DA

Table 2.7 is to test whether hypotheses 1 is set up. According to model (2), do multiple regression analysis. It can be seen that experimental variable Big6 conforms to DeAngelo firm size and audit quality are related theory, while the regression coefficients symbols are negative, it does not have a significance, namely non-"six big" is not significantly lower than that of "six big" audit quality. It also supports hypothesis 1.

Table 2.8 multiple regression of earnings management effected by regional legal difference and

C*	•
tirm.	size

	Whole sample		"six big"		Non-"six big"	
Variable	regressio n coefficie nt	t	regressio n coefficie nt	t	regressio n coefficie nt	t
constant	-0.057	-1.585	0.025	0.48	-0.087	-2.078
Size	0.003	1.834	0.001	0.457	0.005	2.479
Leverage	-0.042	-5.11	-0.009	-0.907	-0.059	-5.704
OCF	0.007	0.366	-0.007	-0.241	0.002	0.105
AbsAccr	-0.054	-2.39	-0.162	-1.66	-0.049	-2.057
Loss	0.009	1.228	-0.003	-0.252	0.013	1.493
Index	0.001	2.883	0.001	1.017	0.001	2.654
Big6	0.007	0.549				
Big6×Index	-0.001	-0.888				
Observations	1232		168		1064	
Adjusted R2	0.029		-0.005		0.039	
F value	5.634		0.87		8.283	

a. Dependent variable: DA

Table 2.8 is used to verify regression result of accounting firm scale and regional legal difference and earnings management. In Table 2.7, index of regression coefficients of "six big" group and non-"six big" are 0.001, which is not consistent with hypothesis 2. In control variables: the symbol of Leverage is negative, which means that financially troubled company is more likely to have negative earnings management; cash flow (OCF) is negative. The higher cash flow, the more likely negative earnings management is.

D. Conclusion

This paper selects to accounting firm of listed company in 2014 as research sample, and researches the relationship between accounting firm scale and audit quality. Take earnings management as substitution variables for actual audit quality. Through clustering analysis, specify firm size into "six big" and non-"six big". Make empirical research on the relationship between China's current legal environment firm size and audit quality, and the main conclusions are as follows:

1. Using cluster analysis for better identify of scale differences in domestic affairs, adopting dichotomy to divide domestic accounting firms into "six big" and non-"six big". And the very significant difference between "six big" and non-"six big" is clear.

2. From the empirical results, we can see that "six big" and non-"six big" customers manipulating accrued profit has no significant differences, suggesting that "six big" inhibit ability of earnings management is not better than that of non-"six big", and it did not show more strong ability of supervision.

3. The regional differences in legal environment in our country are big. While all transactions are "six big" and non-"six big", but it did not affect the firm's actual audit quality. The study is consistent with Ji Yan's study.

III. POLICY RECOMMENDATIONS

China should continue to improve accounting relevant laws and regulations. On the basis of it, optimize the structure of accounting firm scale configuration; actively explore organization to satisfy the needs of the development of large accounting firms. Actively encourage governance mechanism science, a good momentum of development, professional quality of medium-sized public accounting firms in form of science integration, positive efforts to improve small and medium-sized accounting firms internal management and professional service level, guide small accounting firms innovation service mode, scientific development mode and technical means, and thus develop into a large accounting firm. Cultivate the core competitiveness "big accounting firm" actively in our country with multinational business and provide comprehensive service to improve certified public accountants professional environment, establish and improve industry integrity monitoring system, supervise and urge CPA self-discipline checks, increase CPA violation penalties. Establish professional code of ethics system and professional standards system parallel development, and constantly improve the quality of integrity level and certified public accountants practice, and promote healthy and long-term development of public accounting firm.

ACKNOWLEDGEMENTS

Humanities and Social Science Research Plan funded project of Education Ministry, Item number: 11YJA630026

Colleges and Universities postgraduate research project in Gansu province, item number: 1113-03

Lanzhou University of Arts and Science research project, item number: 2013YBTS06

REFERENCES:

[1] Han Dongjing. Ownership structure, corporate governance and external audit supervision --

empirical evidence from Chinese listed companies. Audit Research, 2008

[2] JiYan, Fan Yifang. Accounting firm scale and audit quality empirical research. Accounting Communications, 2009

[3] Liu Feng, Xie Bing, Huang Yuming. Size and audit quality: store cheating and customer cheating -- based on Hong Kong market mainland listed companies empirical data. Audit Research, 2009

[4] Wu Liansheng, Liu Huilong. Auditing empirical research in China: 1999-2007, Audit Research, 2008

[5] Zhang Gongfu. The path research of product market competition affecting investment efficiency, Ph.D. Thesis, Jinan University, 2008

[6] Zhao Xingmei. Independence interactive mechanism study based on audit contract arrangement, Ph.D. Thesis, Jinan University, 2008