
Sliding Mode Observer-based Sensor and Actuator Fault 
Reconstruction for Nonlinear System 

XIAO  Liao-liang 
( Hunan Railway Professional Technology College, Zhuzhou,  412001) 

Keywords：coordinate transformation, robust fault diagnosis, fault reconstruction, sliding mode 
observer 

 Abstract. This paper presents a fault reconstruction scheme based on sliding mode observers for 
sensor and actuator faults detection and isolation for a class of uncertain nonlinear systems. A 
coordinate transformation is first designed for the output equation of the system followed by a first-
order low-pass filter in order to convert the sensor faults into equivalent actuator faults. The original 
system then is transformed into three subsystems through linear transformation. The simulation 
examples verify the effectiveness of such method. 

1.  Introduction 
System faults and unknown input disturbances are inevitable during operation of a complicated 

power system. With regard to physical position, faults can be classified into actuator and sensor 
faults. Faults can damage the normal system operation and make the system unstable, therefore, the 
fault detection and isolation (FDI) technique plays an important role in system operation. In the past 
decades, the study on FDI made great progress, especially for the model-based fault detection [1–3]. 
Various approaches have been proposed to solve FDI problems, such as differential geometry 
method, self-adaptive control method, and sliding mode observer technique. Moreover, research on 
fault tolerance control and stability analysis considerably promoted the FDI [4–5]. 

Research on faults reconstruction method has become an important field that mainly includes 
actuator fault reconstruction [6], sensor fault reconstruction, and fault reconstruction considering 
unknown input disturbances. Different from the actuator, the sensor is a passive element that merely 
provides the information of the operating system and does not directly affect system behavior.  

2.  Problem description 
A nonlinear system with actuator and sensor faults is given by 
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where nx R∈ , ru R∈ and py R∈  denote, respectively, the state variables, inputs and outputs. The 
nonlinear continuous term ( , ) nx u RF ∈  is assumed to be known. The unknown nonlinear term 

( ) qd t R∈  models the lumped uncertainties and disturbances experienced by the system, which is 
assumed to be bounded, i.e., a positive constant 1γ  exists such that 1( )d t γ≤ .The unknown 

nonlinear terms ( ) q
af t R∈  and ( ) m

sf t R∈  denote, respectively, actuator faults and sensor faults, 
which are also bounded, i.e., two constant 2γ  and 3γ exist such that 2( )af t γ≤ and 

3( )sf t γ≤ . n nA R ×∈ , n rB R ×∈ , p nC R ×∈ , n qD R ×∈ , n qE R ×∈ and p m
sF R ×∈  are known constant 

matrices with n p q m> > + . 
Assumption 1. D is a column full rank matrix and rank(CD)=rank(D). 
Remark 1. If the disturbance distribution matrix D is not a column full rank matrix, for example, 

rank(D)=q1<q, then a rank decomposition D=D1′D2′ could be applied, where D1′ is a column full 
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rank matrix and d1′(t)=D2′d2′(t) could be considered as a new unknown disturbance. 
Assumption 2. The matrix pair (A,C) is observable. 
The matrix obtain the following equation: 
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where 1( ) n qx t R −∈ , 2 ( ) qx t R∈ , ( ) ( )
11

n q n qA R − × −∈ , ( )
12

n q qA R − ×∈ , ( )
21
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1
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1
n q qD R − ×∈ , and 2

q qD R ×∈  is a 
nonsingular matrix.  

Based on Assumption 1, two transform matrices, namely, T and S, such that  
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Therefore, Eq.(2) could be converted as follows: 
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 and C22 is a nonsingular matrix. 

The following nonsingular transformation matrix T is then constructed : 
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Therefore, the coefficient matrices in (10) are as follows: 
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where 1
11 11 1 2 12A A D D A−= − , 1 1 1

12 11 1 2 21 1 2 12 1 2 22( )A A D D A D D A D D A− − −= − + − , 21 21A A= , 
1

22 21 1 2 22A A D D A−= + , 1
1 1 1 2 2( , ) ( , ) ( , )x u x u D D x u−F = F − F , 2 2( , ) ( , )x u x uF = F , 

1
1 1 1 2 2E E D D E−= − , 2 2E E= , 1

1 1 1 2 2B B D D B−= − , 2 2B B= , 1( ) n qz t R −∈ , 2 ( ) qz t R∈ , ( ) ( )
11

n q n qA R − × −∈ ,
( )

12
n q qA R − ×∈ , ( )

21
q n qA R × −∈ , 22

q qA R ×∈ , ( )
1

n q qE R − ×∈ , 2
q qE R ×∈ , 1( , ) n qx u R −F ∈ , 2 ( , ) qx u RF ∈ ,

2
q qD R ×∈ , ( ) ( )

11
p q m n qC R − − × −∈ , 22

q qC R ×∈ , 1
p q mv R − −∈  and 2

qv R∈ . 
System (2) is then transformed into the following subsystems: 
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System (3) is converted as follows: 
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where 1 2( )Tz z z= , m m
sB R ×∈ , 2

m nC R ×∈ , and 1 n nT R− ×∈ , therefore 1
2

m n
sB C T R− ×∈ . Afterward, we 
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assume that 1
2 1 2( )sB C T A A− = , where ( )

1
m n qA R × −∈  and 2

m qA R ×∈ . System (5) could be converted 
as follows: 
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           （6） 

The details will be presented in the following sections. 

3.  Simulation example 

 
Consider the following 6-order nonlinear system with multi-fault and multi-disturbance: 
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Transformation Matrices S0 and S are designed as follows:  
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The reconstruction arithmetic of actuator fault fa(t) could be obtained 
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From (53), the reconstruction arithmetic of sensor fault fs(t) could be obtained 
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From (55), the estimation arithmetic of unknown input disturbance could be obtained 
5 1

1
5

2
2

1 11
1 1

4 2ˆ ( )
4 2

2( )e ed t
e eσ

ρ ρ
σ

−
+ +

=  

22
6 2

2
6 2 2 1

12
20. 3ˆ ( )

2 3
5( )e ed t

e e σ
ρ

σ
ρ−

+ +
=  

The observed parameters are as follows:
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, 1 2 3 0.01σ σ σ= = = . 

Two overlapped sine signals were used to simulate the incipient fault for actuator fault ( )af t , 

where 1 2sin 40 2sin 5af t t= + , 2 ( ) 8sin(20 )af t t= .The sensor fault 1( ) 5sin(40 )sf t t= , 2 ( )sf t  is 
simulated by a white noise with sample period of 0.02 s, which is the combination of abrupt fault 

and intermittent fault. The unknown input disturbances 1( ) 4sin15d t t=  and ( )2 ( ) 6sin 20d t t= . The 
initial value of state variable x in the simulation example is −2. The simulation results are as follows: 
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Fig. 1. The first state x1 and its estimation x̂ 1          Fig. 2. The estimation error e1 

     
Fig.3. The second state x2 and its estimation x̂ 2         Fig. 4. The estimation error e2 

     
Fig. 5. The third state x3 and its estimation x̂ 3           Fig. 6. The estimation error e3 

Figures 1 to 6 show the estimation results of the six state vectors and the corresponding 
estimation errors. The above results imply that the observers converge quickly, which sets a 
foundation for the reconstruction of the multi-dimensional fault and unknown input disturbance in 
the context below. 

6．Conclusions 

In this paper, a type of nonlinear system with actuator faults, sensor faults, and unknown input 
disturbances is studied. A fault reconstruction method of nonlinear system is presented. First, a 
primary transformation is made on the output equation of the system to obtain two output sub-
equations.  
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