
A Novel Approach for a Specific Optimization Problem in Compilers
Hai Lin1a and Baoliang Mu1b

1College of Software, Shenyang Normal University 253 Huanghe North Street, Shenyang, 110034,
China

ajlu_linhai@163.com, b87090110@qq.com

Keywords: data flow analysis, constant propagation

Abstract. In this paper, we consider the problem of constant propagation. If some variable can only
take a constant value in a given program, then we can replace all the occurrences of that variable
with the constant value. That does not affect the semantics of the program, the program can be
accelerated at run time. In order to present our method, first we propose a tiny language. We give
the full syntax and semantics of that language. All the optimization is done on the source code of
this language. We then present our optimization method as a set of inference rules.

Introduction
Code optimization techniques are widely used in compilers [1,2]. The goal of code optimization

is to produce more efficient code. In other words, code optimization transforms the original
program to some other program. The minimum requirement is that the transformation must preserve
the semantics of the program. And the transformed program runs more faster than the original
program.

Many forms of code optimizations are done in compilers, e.g. dead code elimination, constant
propagation [3,4,5,6]. In this paper, we consider a specific form of optimization. Here is a very
simple example, illustrating the key idea of our optimization. Let us consider the following piece of
C code.

Figure 1
In the above code fragment, x and y are both constants. That means we can replace x and y with

their specific values in the code. As a consequence, z becomes a constant. The replacements do not
change the semantics of the program. The advantage is that the resulting program runs faster.

The rest of the paper is structured as follows. In the next section, we introduce a tiny language.
All the optimization is done on the source code level of this tiny language. And then we present our
optimization method in the form of inference rules. Finally we conclude in the last section.

A Tiny Language
For simplicity, we design a new tiny language and present our optimization technique for this

language. This language has 5 kinds of statements, assignment statement, conditional statement,
while statement, output statement, and compound statement. In this new language, variables can be
used without declarations, variables are implicitly integers. We throw away function calls, pointers,
and Boolean expressions, for simplicity. Our optimization method can be easily generalized to
real-world programs.

1 int x;
2 x = 11;
3 y=8;
4 z= 283*x + y*92;

International Conference on Applied Science and Engineering Innovation (ASEI 2015)

© 2015. The authors - Published by Atlantis Press 1981

program : statementSeq
;
statementSeq : statementSeq statement
| statement
;
statement : assignmentStmt
| conditionalStmt
| whileStmt
| outputStmt
| compoundStmt
;
assignmentStmt : IDENTIFIER ASSIGN expression SEMI
;
conditionalStmt : IF LPAREN condition RPAREN statement ELSE statement
;
whileStmt : WHILE LPAREN conditional RPAREN statement
;
outputStmt : PRINT IDENTIFIER SEMI
;
compoundStmt : LCURLY statementSeq RCURLY
;

Figure 2 demonstrates a piece of code in our tiny language, which computes the product of all
the integers between 1 and 10, and outputs the result.

Figure 2

Our Optimization Method
In this section, we present our optimization method in the form of inference rules. Here is the

basic idea. We keep track of the number of values for each variable in scope. We use x=B to denote
that x can take no value, we use x=C to denote that x can take a constant value C, and we use x=T
to denote that x can take more than one values at a particular program point.

 We define a binary operator ⊕ on {B, C, T}, which is as follows.

Table 1
x y x⊕y
B B B
B C B
B T B
C C C
C T T
T T T

total = 1;
num = 1;
while(num < 11){
 total = total * num;
 num = num + 1;
}
print total;

1982

 At each program point, we keep a mapping M, which maps from each variables in scope to its

values from {B, C, T}. We use M(x) to denote the value of x under the mapping M. We can use a
substitution to modify the mapping, which is defined as follows.

M[x=V](x) = V
M[x=V](y) = M(y), if x≠y.

And finally M1⊕M2 is defined such that for all variables x, M1⊕M2(x) = M1(x)⊕M2(x). We

use the following inference rules to compute the mapping M at each program point. Rule 1 means
that if before x gets a constant value C the mapping is M, then after that statement M becomes
M[x=C]. Rule 2 means that if before x gets an expression involving y1, y2,…,yn, the mapping is M,
then after that statement M becomes M[x= y1⊕y2⊕…⊕yn]. Rule 3 means that at any merge point
M1, M2 becomes M1⊕M2.

M; x=C; M[x=C] (Rule 1)
M; x=e{y1, y2,…,yn}; M[x= y1⊕y2⊕…⊕yn] (Rule 2)
M1, M2 M1⊕M2 (Rule 3)

 We can use the above rules to compute the number of values for each variables at all program
points. If at some program point, a variable x can only take one constant value C, then we can use C
to replace x at that program point.

Conclusions
In this paper, we proposed a new method for constant propagation. This method is useful for

produce faster code without changing the semantics of the program. We designed a tiny
programming language and present our optimization method for this language. We use a set of
inference rules to compute the number of values for each variable at all program point. If at some
program point, a value can only take a constant value, then we can replace the variable with that
constant value.

Acknowledgement
This work is supported by Liaoning Provincial Natural Science Foundation under grant

201202202, Scientific Research Foundation of Liaoning Provincial Education Department under
grant L2012388.

References
[1] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral program optimization system. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), June 2008.
[2] Traub, O., Schechter, S., and Smith, M. 2000. Ephemeral Instrumentation for Lightweight
Program Profiling. Tech. rep., Harvard University.
[3] Bala, V., Duesterwald, E., and Banerjia, S. 1999. Transparent Dynamic Optimization: The
Design and Implementation of Dynamo. Tech. Rep. HPL-1999-78, Hewlett Packard Laboratories.
June.
[4] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet: Parameterized optimizations for
empirical tuning. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1-8, March 2007.

1983

[5] Fisher, J. A. 1981. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE
Trans. Comput. C-30, 7, 478--490.
[6] Mustafa, D.; Eigenmann, R. "Portable section-level tuning of compiler parallelized
applications", High Performance Computing, Networking, Storage and Analysis (SC), 2012
International Conference for, On page(s): 1 – 11

1984

