
An Immunity-inspired Relocation Method for
Unknown Malware Detection

Yu Zhang

College of Information Science and
Technology

Hainan Normal University
Haikou, China

bullzhangyu@126.com

Lihua Wu

College of Information Science and
Technology

Hainan Normal University
Haikou, China

Ziqiang Luo

College of Information Science and
Technology

Hainan Normal University
Haikou, China

Abstract—Malware is a type of software designed to gain

unauthorized access to a computer system. Most malwares have a

relocation module that gets the base address of the codes in

execution environment to infect other programs, neither do most

legitimate programs. Due to this unique characteristic, the

malware relocation module can be extracted as an antibody in

the immune systems to detect the specific antigens. We present a

malware detection method inspired by biology immune system

and the structure of malware relocation code. The experiment is

conducted and the result shows that this approach not only has

relatively higher detection rate of unknown malware than other

methods, but also has better capability of self-adaptive and self-

learning.

Keywords—Computer Immune System; Malware Relocation;

Unknown Malware detection1

I. INTRODUCTION

Malware or malicious software is software designed to
disrupt computer operation, gather sensitive information, or
gain unauthorized access to a computer system [1, 2]. Malware
is a general term used by computer professionals to mean a
variety of forms of hostile, intrusive, or annoying software or
code. Malware includes computer viruses, worms, trojan horses,
spyware, adware, most rootkits, and other malicious programs
[3]. In this paper, we will focus on computer viruses. A
computer virus is a malware program that, when executed,
replicates by inserting copies of itself into other computer
programs, data files, or the boot sector of the hard drive.
Computer viruses currently cause billions of dollars worth of
economic damage each year, due to causing systems failure,
wasting computer resources, corrupting data, increasing
maintenance costs, etc.

The security researchers have developed a variety of
detection techniques to protect computer systems against
malwares attack. Those techniques can be categorized broadly
into three categories: anomaly-based detection, specification-
based detection and signature-based detection [4, 5, 6, 7].
Anomaly-based detection techniques use the knowledge of

This work was supported by the National Natural Science Foundation
of China under Grant No. 61262077, 61462025; the Natural Science
Foundation of Hainan under Grant No. 613161; the National
Students' Innovation and Entrepreneurship Training Program under
Grant No. 201211658036.

what constitutes normal behavior to decide the maliciousness
of a program under inspection. Specification-based techniques
leverage some specification of what is valid behavior to decide
the maliciousness of a program under inspection. Signature-
based detection uses its characterization of what is known to be
malicious to decide the maliciousness of a program under
inspection [8, 9, 10]. The fundamental limitation of anomaly-
based detection is its high false-positive rate and the time
complexity in the training phase. The main limitation of
specification-based detection is that it is difficult to specify
completely and accurately the entire set of valid behaviors. One
of the major drawbacks of signature-based detection is that it
cannot detect zero-day attack, for which there is no
corresponding signature stored in the database [11].

To improve the performance of currently malware detection,
we proposed an immunity-inspired relocation method for
malware detection. We have found that the malwares cannot.
Malware relocation, which is uncommon in legitimate
programs, is vital to the execution of computer viruses
allowing them to obtain the base address of the codes, and it
cannot correctly execute without relocation [12]. So the
malware relocation codes are extracted as antibodies in the
immune systems to detect the specific antigens. Experiment
was conducted and results show that this method has better
efficiency in the detection of known and previously unknown
malwares than the others.

In the following sections, we first describe the definition of
the relocation gene in section 2. Then we introduce the antigen
presenting and the generation of the antibody in section 3.
Section 4 shows the implementation and experiment results.
We state our conclusion and future work in Section 5.

II. DEFINITION OF THE RELOCATION MODULE

Relocation, which is uncommon in legitimate programs, is
important to the execution of malicious codes allowing them to
obtain the base address of the codes thus creating computer
epidemics and maximizing the effectiveness of the attack. The
Relocation module can be regarded as a specific sequence of
commands that cause the malware to relocate itself and thus to
execute correctly in host programs. The typical self-relocation
in the malicious executable codes is shown in Figure 1.
Relocation can be accomplished in various ways relying on
malware writers’ techniques. Since the most sophisticated and
versatile viruses are still implemented in assembly language

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 75

and assembled into executable files, the relocation gene could
only be possibly obtained in search of low-level machine codes.

Fig. 1. The malware relocation module

The RM (Relocation Module) is usually contained within
the code sequence of malware and it could also be dispersed
throughout that sequence to become a variety of RM mutations
in order to anti-disassemble. Since none of the machine
command alone can be considered malicious, only the
particular sequences of commands can construct the RM.
Therefore, the RM is described using the concept of building
blocks, where each block performs a part of the self-relocation.
This concept is illustrated in Figure 2. The upper blocks of the
self-relocation gene base on the lower blocks. Most of the
building blocks involved in malicious self-relocation activity
can individually be included in any program for legitimate
reasons. Only when integrated into larger structures based on
their inter-functional relationships, these building blocks can be
regarded as attempts to self-relocate.

Fig. 2. The RM Structure

The RM consists of such blocks in various ways. Therefore,
its structure can be viewed as a regular sentence being built up
by concatenating phrases, where phrases are built up by
concatenating words, and words are built up by concatenating
characters.

Applying such a syntactic approach to describing the RM is
to facilitate the recognition of sub-patterns. This suggests the
recognition of smaller building blocks first, establishing their
relevance and contribution to the relocation, and then
considering the next sub-pattern. This process is similar to text
analysis, which includes recognizing characters first, then
concatenating them into words, and next continue
concatenating words into phrases and sentences checking for
correct grammar and punctuation. The syntactic description of
the RM provides a capability for describing and detecting large
sets of complex patterns by using small subsets of simple
pattern primitives. It is also possible to apply such a description
any number of times to express the basic structures of lots of
gene mutations.

Following the concept of syntactic description, the RM
structure could be represented using the grammar definition
notations [12]:

G = {VN, VT, P, S} (1)

where

G is the self-relocation gene,

VN is the non-terminal variable,

VT is the terminal variable,

P is the finite set of rules,

S is the starting point of the gene.

Suppose that the RM is represented by the structure above
(Figure 1.), the non-terminal variable VN in the expression
above can be defined as:

<Self_Relocation_Gene>, <Call_Command_Block>,

V = <Pop_Out_of_Stack_Block>, <Move_Data_Block>,

<Exchange_Data_Block>, <Subtract_Data_Block>

N

 
 
 
  

 (2)

The terminal variable VT represents the RM sequence:

VT={CALL,JMP,POP,MOV, XCHG, SUB, ADD} (3)

The complete vocabulary V(G) is composed of VN and VT ,

that is, V(G)= VN ∪ VT and VN ∩ VT ＝∅ .

P, the set of rules, is expressed as α→β, where α and β
interconnections in V .

S∈VN represents the starting point in VN, which is equal to
the < Relocation_Gene >.

A. Maintaining the Integrity of the Specifications

The template is used to format your paper and style the text.
All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire proceedings,
and not as an independent document. Please do not revise any
of the current designations.

III. THE IMMUNITY-INSPIRED RM DETECTION METHOD

The malware relocation gene pool through the antigen-
presenting is defined as follows.

32
V={v|v |v|=i v=Ap(x) }

8

iH Nonself
i

∈ ∧ ∧ ∈
=
∪ (4)

where

Ap (x) is the antigen-presenting function;

v is the virus gene extracted from the virus relocation
module, whose length is between eight and thirty-two
hexadecimal codes.

Offset Opcode Instruction

.text:00401B57 E800000000 call $+5

.text:00401B5C loc_401B5C:

.text:00401B5C 5B pop ebx

.text:00401B5D 81EB5C1B4000 sub ebx, offset loc_401B5C

76

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

A. The generation of the antibody

The acquired immune system that can protect against the
specific viruses is generally acquired through vaccination to
generate specific antibodies. The antibodies in this study are
generated from the extraction of the vaccines in the malware
relocation gene pool, which are the malware genes obtained by
antigen-presenting. Then, the detectors are generated from the
antibodies to detect the malwares. For example, we will
generate the detector E8000000005B from the malware gene
pool. The detector set is defined as follows.

32
{ , | , }

8

iD d affinity d H affinity N
i

= < > ∈ ∈
=
∪ (5)

where

d is the antibody;

affinity is the match between the antigen and the antibody.

B. The detection of unknown malware

After the detectors were generated, they can effectively
detect unknown malwares. During the detection, the antigen
whose affinity with the antibody is larger than the threshold
value will be regarded as a virus. The dynamic evolutional
equations of the antibodies and the detection of unknown
malwares are as follows.

{ , 0
()

(1) (), 1

t
SA t

SA t SA t tnew

∅ =
=

− + ≥
 (6)

() { | , , , . }SA t v v D y Self v y Match v affinitynew β= ∈ ∀ ∈ < >∉ ∧ ≥ (7)

{ , | , , (. , ()) 1}Match v y v D y AG f v d AP ymatch= < > ∈ ∈ = (8)

{ (,) /1 ,
(,) ,0

f v y Lvaffinity
f v ymatch otherwise

α≥
= (9)

(v,y)=max(x , x , ...,)1 2affinity | | 1f x L Lyv − + (10)

min(,)

x = i
1

L Lv y

ij
i

θ∑
=

 (11)

{ ,1 | | 1,111 ,
= ,0

v y i L L j Lv y vi i j
ij otherwiseθ

= ≤ ≤ − + ≤ ≤+ −
 (12)

where

SA is the specific antibody set;

SAnew is the new generated antibody set, whose affinity with
self is greater than the threshold value β;

fmatch is the matching function between antibody and antigen;

faffinity is the affinity function between antibody and antigen;

Match is the set consisting of the antigens and the
antibodies matched by the antigens;

ijθ is the affinity value; if there is a matching between an

antibody and an antigen, the value is 1, otherwise 0;

Lv is the vaccine length;

Ly is the antigen length.

IV. EXPERIMENTS AND RESULT

Since there is no benchmark data set available for the
malware detection unlike intrusion detection, our data sets
include 100 viruses collected from the website VX Heavens
[13] and 500 benign executables taken from system32 folder in
Windows. Some executables were obfuscated with
compression, encryption, or both; some were not, but we were
not informed which were and which were not. The main goal
of the experiment is to test the detection rate of known and
unknown viruses and false-positive rate of the normal files.
The experimental results are shown in Figure 4. Figure 4 shows
that the detection rate of the malicious codes is 98%, the
omitting rate is 3%, and the false-positive rate
(misidentification of legitimate programs as viruses) is only
3.6%. The good experimental result can own to the self-
relocation based detector that detects the lower level machine
codes combing with the self-relocation gene database to form
upper level blocks, which makes it effectively detect malicious
codes with lower false-positive rate.

Fig. 4. The experiment results of the proposed method

In order to test the performance of the proposed approach,
we conducted the related comparison experiments with the
currently most mature antivirus product Kaspersky7.0, 360
security guard, Eset NOD32 and with APIs, which uses API
sequence to detect malicious codes.

The comparison experiments results are shown in Figure 5
that the detection rate of our proposed approach is 97%,
Kaspersky 88%, 360 security guard 90%, Eset NOD32 95%
and APIs 65%. The results indicate that our proposed approach
has higher detection rate than the others, and efficiently testify
the validity of our proposed approach.

77

Fig. 5. The comparison experiments results

V. CONCLUSION

We proposed an immunity-inspired relocation method for
unknown malware detection. We extract the relocation code
from malware and regard it as a malware relocation gene in the
computer immune system. One of the primary strengths of the
proposed approach is its ability to detect previously unknown
malwares with a very low false-positive rate. The experimental
results show that the proposed method not only has a high
detection rate, low false-positive rate and low omitting rate, but
also its efficiency is better than other methods.

REFERENCES

[1] Richard Ford, Eugene H. Spafford, Happy birthday, dear viruses.
Science, 2007, vol. 317: 210-211.

[2] Stephen Trilling, Carey Nachenberg. The future of malware. EICAR
Proceedings 1999.

[3] Sandeep Kumar, Eugene H. Spafford. A generic virus scanner in C++.
Proceedings of the 8th Computer Security Applications Conference,
1992, 210-219.

[4] Nwokedi Idika, Aditya P. Mathur. A Survey of Malware Detection
Techniques. http://www.serc.net/report/tr286.pdf, February, 2007.

[5] Yu Zhang, Feng Xia. A Self-Relocation Based Method for Malware
Detection. Applied Mechanics and Materials, 220-223, 2012.

[6] V. Skormin, D. Summerville, J. Moronski. Detecting Malicious Codes
by the presence of their Gene of Self-Replication, Computer Network
Security, Lecture Notes in Computer Science, 2003, vol. 2776.

[7] Douglas Summerville, Victor Skormin, Alexander Volynkin, et al.
Prevention of Information Attacks by Run-Time Detection of Self-
replication in Computer Codes. Lecture Notes in Computer Science,
2005, vol. 3685: 54 – 75.

[8] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A behavioral approach
to worm detection. Proceedings of the 2004 ACM Workshop on Rapid
Malcode, 2004, 43–53.

[9] Lansheng Han, Mengxiao Qian, Xingbo Xu, Cai Fu. Malicious code
detection model based on behavior association, Tsinghua Science and
Technology, 19(5):508-515, 2014.

[10] Asaf Shabtai, Robert Moskovitch, Yuval Elovici, Chanan Glezer.
Detection of malicious code by applying machine learning classifiers on
static features: A state-of-the-art survey, Information Security Technical
Report, 14(1):16–29, 2009.

[11] Konrad Rieck, Philipp Trinius, Carsten Willems, Thorsten Holz.
Automatic analysis of malware behavior using machine learning. Journal
of Computer Security,19(4): 639-668, 2011.

[12] Guojpeng/CVC.GB. The analysis of Win32 PE viruses. 2003,
http://www.hynubbs.cn/netstar/news_view.asp?id=61.

[13] VX Heavens. http://vx.netlux.org

78

