
HMDS: A Novel View of Data System Based on
Hybrid Memory Architecture With Non-Volatility

Hao Liu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

liuhaosjtu@sjtu.edu.cn

Linpeng Huang
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

lphuang@sjtu.edu.cn

Abstract— In now Big Data era, rapidly growing data size and
limited computing capability of current computer system have
brought sharp contradiction between these two issues. So it is
urgent to improve the data storage and processing ability for
current computer system. Emerging byte-addressable, non-
volatile memory (NVM) technology, can work like DRAM but
with non-volatility, is expected to bring new opportunity of
computing capability improvement in the near future. According
to the hardware changes, it is necessary to reconsider the changes
of system software and data storage methodology, especially the
role of the data in the system. In this paper, we add the NVM to
the computer architecture, and base on the hardware changes,
we reconsider the design method of system software, among this
we propose the concept of Data System, design a software defined
interface, reconfig the system architecture without any real
hardware changes. Finally, we present HMDS, a flexible hybrid
memory data system architecture. Data system consider data as
the center of a whole system, data storage is the foundation, data
accessing and processing is the superstructure and all system
parts as a service for the data. We think our architecture is novel
and can bring data storage and processing a new perspective.

Keywords—Big Data; NVM; Data System

I. INTRODUCTION
Nowadays, extremely huge volume of data is produced

every day, data in computer system becomes more and more
difficult to control, to access and to process. How to store and
to process data is a key problem in now-days and it has also
brought us many confuses. One important reason is that data
processing ability of current computer system can’t catch up
with the rapid growth of data. To solve this problem, many
approaches have been proposed on different aspects. Recent
years rapid developed SCM technology, has brought new
opportunity to solve the problem above. On system software
level, several in memory file systems and databases were
proposed which focus on the improvement of OS kernel and
corresponding parts of system software to sup-port non-volatile
memory. On programming mode level, Mnemosyne[11]
provided a lightweight persistent memory program interface,
ensure data consistency through a lightweight transaction

mechanism. Above these work, different approaches are focus
on different aspects, but all of these approaches only focus on
one aspect, it lacks a general ideology about system design. In
this article, we proposed the concept of data system, a novel
system design perspective, change the design principle from
traditional computing central to novel data central. We de-
signed the Hybrid Memory Data System (HMDS), a data
system based on hybrid memory architecture with both DRAM
and SCM. We designed a software defined architecture to
adapt the architecture and data access method changing. This
paper was organized as follows: First, we describe the concept
and design philosophy of data system (A), then present the
system architecture overview will be presented in(B), software
defined hybrid memory architecture will be presented in(C),
multi mode data access interface in(D), and hybrid memory
data system will be presented in(E). Finally, we give our
comments on implementation and future work, and a brief
summary of related research work from which HMDS was
inspired.

Ⅱ.DATA SYSTEM

A. Data System Philosophy
In traditional computer system, hardware, software and

applications compose the main components of the system. Data
in the system, play a role of passive processing object. During
the system running and data processing, data is transformed
from storage side (disk, memory, file system, database) to
processing side (CPU, GPU). But due to the huge performance
gap between two parts, a large access latency has been
produced and the whole system efficiency was severely
impacted because of the deficient utilizing of the computing
resource. Especially in now big data era, explosively increasing
data volume makes the above contra-diction more and more
seriously. To solve the problem, a lot of technologies and
architectures are proposed, but these methods are mainly focus
on a specific aspect, and it lacks a universal methodology and
new perspective. Thus, we proposed the concept of data system
as a new system design perspective. Ordinary data
management method in existing computer systems is that
organize data by file systems or databases. In the file system
cases, no matter traditional block-based file system (ext3, ntfs,
fat32) or temporary in memory file system (tmpfs, ramfs), data

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 79

is composed by many files, a file is a part of the data and the
file system is a part of the system software. In database cases,
data is standardized by a certain format and saved as many
records. Both of the two methods illustrate that data is
managed by a tool and this tool is only a part of the system.
Figure 1 shows a traditional architecture of a computer system.
In the system, data is isolated from the whole system and just
as a part of sys-tem. This pattern has been used for many
decades and have made few changes. Different with the
traditional thinking, we first emphasize the data as the central
of a system, other data management software such as file
systems or databases in the system are just one existing form or
management method of the data, supplying corresponding
service for the data. Figure 2 shows a philosophical image of
the data system, it shows a high-level overview architecture of
proposed data system, and the data sys-tem design is based on
the following main principles:

1) Data is the central of the system.
2) Data storage is the foundation of the data system.
3) Data accessing and processing is the superstructure above

the data storage.
4) Other parts of the system (hardware, software, etc.) is a

service of the data in the system.
By this design methodology, we consider the data as the

central of a system, liberate the data from the limited
computing resource and bring a novel system design
perspective face to the future.

Figure 1: Traditional Computer System

Figure 2: Novel Data System

B. Architecture Overview
In this paper, we first proposed a hybrid memory

architecture as the main memory system. It uses both DRAM
and SCM as working memory and data storage. We designed a

software define interface library to define the level relationship
between DRAM and SCM without any hardware layer
changes. Then we designed hybrid Memory Data System
(HMDS) to echo the central idea of this paper, HMDS is
similar to an in memory persistent file system, and is the
crucial part of our work. In HMDS, we extend operating
system VMM mechanism to manage both DRAM and SCM,
make it compatible with POSIX standard. In HMDS, we
improved the access mode of traditional read/write data
operation, developed a new SCM aware read/write data access
mode. Besides, HMDS also optimized the memory mapped I/O
by mapping unified memory directly into an applications
address space, made load/store operation available and fast.
This can avoid memory mapping overhead due to the first copy
accessed page to DRAM in traditional file system. We call the
SCM aware read/write and load/store access mode as multi-
mode access mode. This access mode exploits SCMs byte
addressable property to memory devices directly, therefor
avoid the overheads of the block-based data access in
traditional file systems, realized efficient access to SCM
devices by applications. The system architecture overview is
shown in Figure 3, and the other parts of the system will be
illustrated in the next sections.

C. Software Defined Hybrid Memory Architecture
In this part, we designed a software-defined hybrid memory

architecture to maximize the advantages of each kind of
memory, DRAM and SCM. According to the different features
of the upper application, software define interface chooses
different memory architecture without any changes to the real
hardware. We have implemented two system architectures: i)
DRAM as the buffer of the SCM, ii) DRAM as the equal part
of SCM. The comparison of the two architectures is illustrated
in Figure 4. In the case of DRAM as the buffer of the SCM,
metadata of the data system is mainly allocated in DRAM and
data is allocated in SCM. This is equivalent to adding a layer of
DRAM between SCM and CPU as a buffer. This design can
take advantage of the merits of DRAM: fast, wear-leveling and
maintain volatility when there is no need to guarantee data
consistency in some specific applications. In the case that
DRAM as one equal part of SCM, we can deployment unified
byte-addressing mechanism then we can use the same CPU
instructions to access two different memory devices. We
defined a software defined interface library (SDILib), which

80

Table 1: Software Defined Interface Library

Command Parameter Comment
showarch -all Show the configuration of both

dram and scm in the system.
-scm Show the configuration of scm

in the system.
-dram Show the configuration of dram

in the system.
defarch -dram/scm Define the system architecture that

dram as the buffer of scm.
-dram*scm Define the system architecture that

dram and scm as an equal part.
includes two shell commands showarch and defarch. It makes
the HMDS can be aware of the existence of DRAM and SCM
devices. Showarch is used to show the DRAM configuration in
the system or SCM configuration in the system or both of
them, with a parameter of -darm, -scm, and -all respectively. In
defarch command, we implemented the reconfigurable memory
architecture which mentioned before with the parameter of -
dramscm and -darmscm respectively. The details of the two
shell commands is depicted in Table 1.

D. Multi Mode Data Access Interface
In this part, we present two improved data access mode:

SCM data mode and SCM memory mode. In SCM data mode,
we access data through SDILib and HDMS. This mode
improved the data access operations, including data read, write,
open, close and so on, all of these operations are implemented
based on POSIX standard. In SCM memory mode, HDMS
designed a hybrid memory library (HMLib), provided serval
APIs about memory mapping operations and implemented
memory-like access to SCM, simplified the direct access to
memory address by applications. These APIs are dedicated to
memory allocating, unallocating, mapping and unmapping,
complete the direct accessing to under persistent memory. The
details of the defined APIs are illustrated in Table 2.

Table 2: Hybrid Memory Library

API Parameter Comment

hmalloc (size t size) Allocate a hybrid
memory address space.

hmfree (void *ptr) Free a hybrid memory
page address space.

hmmap (void *start, size t
len, int prot, int
flags, int fd, off_t
offset)

Mapping the physical
memory pages to the
application address space
directly.

hmunmap (void *start, size t
len)

Recycle physical memory
pages mapped to the
application address space.

hmsche (void *page start,
int page flag, int
page index)

Schedule a V_page or a
NV_page between
DRAM and SCM.

Figure 4: Software Defined Hybrid Memory Architecture

Figure 3: System Architecture Overview

E. Hybrid Memory Data System
In this part, the most important part of our work HMDS is

described, a hybrid memory data system which support POSIX
standard interface. The whole system layout is shown in Figure
5. On physical address space, there are metadata, memory
mapping table, data log and data address space. The metadata
part contains the information such as the size of DRAM and
SCM and other root information about data system. The
memory map-ping table part is used to maintain memory
mapping management by using MMU mechanism in SCM
memory mode. The information in the metadata and memory
mapping table are used to build the mapping between the
physical address and the virtual address. The data log part is
used to save the system logging data which guarantee the data
consistency. In the data address space part, the layout of
HMDS is very similar to existing file systems, and HMDS
divided it to four parts further which refer to super page, inode
table, page bitmap and data pages respectively. In the super
page, HMDS stores the pointer to the start address of the inode
table. In the inode table part, a fixed size entry of 256 bytes is
reserved for each inode, and it is simple to get a data pages
metadata through its inode number and the start address in the
inode table. The inode stores several pieces of metadata
including checksum, owner uid, group gid, file mode, page
count of SCM and DRAM, data size, access time and so on.
The bitmap part stores three bitmap flags for each data page,
NV_Bitmap, Use_Bitmap and Size_Bitmap. NV_Bitmap
represents a data page in the memory space is volatile or non-
volatile, Use_Bitmap represents a page that is already allocated
in the memory address space has been used or still free. Size

81

Bitmap represents the size of the page, HMDS support for
three types of page size: 4KB, 2MB and 1GB. As for the page
layout, all metadata and inode table in HMDS is organized by a
B-tree. The B-tree is used to represent both of the inode table
and the data in inodes. By default, all meta data uses the 4KB
size page and the data leaf pages can use all of the three kinds
of size. An inode presents both of a directory data page
ordinary data page. The directory data page is stored as the
ordinary data page, except that their contents are lists of inode
numbers. The data address space is composed by virtual
address space that already allocated by HMDS, and the virtual
address space is divided into the mapped space and the
unmapped space. In the mapped space, there are used data page
space and free page space. In the null data page, there is no
really used space in mapped area. The HMDS data page layout
is shown in Figure5.

Figure5: Data System Layout

Ⅲ. RELATEDWORK
A lot of work has been proposed about non-volatile

memory architecture and system. We borrowed their ideas in
our work but to the best of our knowledge, data system is a
novel concept that haven’t been proposed. On hardware level,
PDRAM[4] designed a hybrid memory architecture based on
PCM and DRAM, incorporated PCM into the main memory
hierarchy of the computer system. NVMDuet[8], proposed a
novel unified working memory and persistent store architecture.
On system software level, several file systems have been
designed for hybrid memory or Flash devices. PMFS[5]
implemented a file system that exploits SCM’s byte
addressability to avoid overheads of block-oriented storage and
enable direct memory access by applications with memory-
mapped I/O. SCMFS[12] is implemented on the virtual address
space and utilizes the existing memory management module of
the operating system to help manage the fi le system space. In
NVMFS[10], data storage was based on SSDs and resolved the
problem of random write issue of SSDs. BPFS[3], used the
technique called short-circuit shadow paping to provide atomic,
fine-grained updates to persistent storage. On operating system
level, [1] and [9] gave some implications about OS
modification. On programming mode aspect, NV-Heaps[2]
presented a light weight, high performance persistent object
approach, provided a model for persistence and transactional
semantics to guarantee system persistency and consistency, it is
also an important issue in HMDS. Mnemosyne[11] declared
global persistent data structure by the pstatic keyword and
implemented several primitives for directly modifying these
persistent variables and support consistent updates through a
light weight transaction mechanism. On novel system
architecture aspect, Memorage[7] leveraged the OS virtual

memory manager to improve the performance of memory
intensive workloads, provided an evolutional path from the
memory-storage dichotomy to integration and co-management
of memory and storage resources.

IV. CONCLUSION AND FUTURE WORK
This paper proposed a new concept of data system, designed

a novel framework dedicate to data storage and processing
based on hybrid memory architecture. We believe that it offers
a new view or an opportunity to finally update the several
decade years old computer system, and promote the redesign
and innovation of current operating system to support new
SCM memory device.

ACKNOWLEDGMENT
The work described in this paper was supported by the

National Natural Science Foundation of China under Grant
No.61472241 and the National High-tech R&D Program of
China(863 Program) under Grant No.2015AA015303.

REFERENCES
[1] BAILEY,K.,CEZE,L.,GRIBBLE,S.D.,ANDLEVY,H.M.Operating

system implications of fast, cheap, non-volatile memory. In Proceedings
of the 13th USENIX conference on Hot topics in operating
systems(2011),USENIXAssociation,pp.2–2.

[2] COBURN,J.,CAULFIELD,A.M.,AKEL,A.,GRUPP,L.M.,GUPTA,R.K.,
JHALA,R.,ANDSWANSON,S. Nv-heaps: making persistent objects fast
and safe with next-generation,non-volatile memories. In ACM
SIGARCH Computer Architecture News(2011),vol.39,ACM,pp.105–
118.4

[3] CONDIT,J.,NIGHTINGALE,E.B.,FROST,C.,IPEK,E.,LEE,B.,BURGE
R,D.,ANDCOETZEE,D.Better i/o through byte-addressable, persistent
memory. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles (2009), ACM, pp.133–146.

[4] DHIMAN, G., AYOUB, R., ANDROSING, T. Pdram: a hybrid pram
and dram main memory system. In Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE (2009), IEEE, pp.664–669.

[5] DULLOOR,S.R.,KUMAR,S.,KESHAVAMURTHY,A.,LANTZ,P.,RED
DY,D.,SANKARAN,R.,ANDJACKSON,J.System software for
persistent memory. In Proceedings of the Ninth European Conference on
Computer Systems (2014),ACM,p.15.

[6] JUNG,J.Y.,ANDCHO,S. Memorage: emerging persistent ram based
malleable main memory and storage architecture. In Proceedings of the
27th international ACM conference on International conference on super
computing (2013), ACM, pp.115–126.

[7] LIU,R.-S.,SHEN,D.-Y.,YANG,C.-L.,YU,S.-C.,ANDWANG,C.-Y.M.
Nvmduet: Unified working memory and persistent store architecture. In
Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems (2014),ACM,
pp.455–470.

[8] MOGUL,J.C.,ARGOLLO,E.,SHAH,M.A.,ANDFARABOSCHI,P.
Operating system support for nvm+dram hybrid main memory. In
HotOS (2009).

[9] QIU,S., ANDREDDY, A.N. Nvmfs: A hybrid file system for improving
random write in nand-flash ssd. In Mass Storage Systems and
Technologies (MSST), 2013 IEEE 29th Symposium on
(2013),IEEE,pp.1–5.

[10] VOLOS,H.,TACK,A.J.,ANDSWIFT,M.M. Mnemosyne: Lightweight
persistent memory. In ACM SIGARCH Computer Architecture News
(2011), vol.39, ACM, pp.91–104.

[11] WU,X.,ANDREDDY,A. Scmfs: a file system for storage class memory.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (2011), ACM, p.39.

82

	Introduction
	Ⅱ.Data System
	Data System Philosophy
	Architecture Overview
	Software Defined Hybrid Memory Architecture
	Multi Mode Data Access Interface
	Hybrid Memory Data System

	Ⅲ. RelatedWork
	IV. Conclusion and Future Work
	Acknowledgment
	References

